Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Low Temperature Combustion Exploration with Negative Valve Overlap

2022-03-29
2022-01-0452
Progressively stringent emission regulations and increasing regulatory demands on fuel economy have led to advanced combustion development. Low temperature combustion (LTC), specifically homogenous charge compression ignition (HCCI), is a promising technology for reducing exhaust emissions and improving efficiency. However, its operating range is limited to low load without boosting and EGR, due to low volumetric efficiency and high pressure rise rates. In addition, effectively controlling the combustion phasing is another challenge in realizing the associated combustion gains. In this work, advanced valve control mechanisms known as continuously variable valve duration (CVVD) and continuously variable valve timing (CVVT) were used for both intake and exhaust valvetrains to enable negative valve overlap (NVO) for trapping hot exhaust residuals and to promote multipoint simultaneous ignition.
Technical Paper

Numerical Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion with Oxygenated Fuels

2024-04-09
2024-01-2373
A numerical investigation of a six-stroke direct injection compression ignition engine operation in a low temperature combustion (LTC) regime is presented. The fuel employed is a gasoline-like oxygenated fuel consisting of 90% isobutanol and 10% diethyl ether (DEE) by volume to match the reactivity of conventional gasoline with octane number 87. The computational simulations of the in-cylinder processes were performed using a high-fidelity multidimensional in-house 3D CFD code (MTU-MRNT) with improved spray-sub models and CHEMKIN library. The combustion chemistry was described using a two-component (isobutanol and DEE) fuel model whose oxidation pathways were given by a reaction mechanism with 177 species and 796 reactions.
X