Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles

2015-04-14
2015-01-0957
Biofuels, such as ethanol and butanol, have been the subject of significant political and scientific attention, owing to concerns about climate change, global energy security, and the decline of world oil resources that is aggravated by the continuous increase in the demand for fossil fuels. This study evaluated the potential emissions impacts of different alcohol blends on a fleet of modern gasoline vehicles. Testing was conducted on a fleet of nine vehicles with different combinations of ten fuel blends over the Federal Test Procedure and Unified Cycle. The vehicles ranged in model year from 2007-2014 and included four vehicles with port fuel injection (PFI) fueling and five vehicles with direct injection (DI) fueling. The ten fuel blends included ethanol blends at concentrations of 10%, 15%, 20%, 51%, and 83% by volume and iso-butanol blends at concentrations of 16%, 24%, 32%, and 55% by volume, and an alcohol mixture giving 10% ethanol and 8% iso-butanol in the final blend.
Technical Paper

Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends

2014-10-13
2014-01-2768
The relationship between ethanol and iso-butanol fuel concentrations and vehicle particulate matter emissions was investigated. This study utilized a gasoline direct injection (GDI) flexible fuel vehicle (FFV) with wall-guided fueling system tested with four fuels, including E10, E51, E83, and an iso-butanol blend at a proportion of 55% by volume. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer with an emphasis on the physical and chemical characterization of particulate matter (PM) emissions. The results indicated that the addition of higher ethanol blends and the iso-butanol blend resulted in large reductions in PM mass, soot, and total and solid particle number emissions. PM emissions for the baseline E10 fuel were characterized by a higher fraction of elemental carbon (EC), whereas the PM emissions for the higher ethanol blends were more organic carbon (OC) in nature.
Technical Paper

Fuel Effects on PM Emissions from Different Vehicle/Engine Configurations: A Literature Review

2018-04-03
2018-01-0349
Particulate matter (PM) emitted from gasoline combustion continues to be a subject of research and regulatory interest. This is particularly true as new technology gasoline direct injection (GDI) engines can produce significantly higher levels of PM compared to older technology port fuel injection (PFI) engines. The goal of this study was to conduct a comprehensive literature search and subsequent statistical analysis related to the effects of gasoline properties, such as aromatics, octane indices, and fuel volatility, on PM (mass and number) emissions from PFI and GDI vehicles/engines. The statistical analyses showed a range of positive and negative correlations between different fuel properties and PM mass, total particle number (PN) and solid particle number (SPN) for different engine types (GDI, PFI, and for subdivisions of these engine types), numbers of engine cylinders and driving cycles.
X