Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Inverse Finite Element Characterization of Soft Tissues Using Impact Experiments and Taguchi Methods

2006-04-03
2006-01-0252
The objective of this study is to establish a methodology to identify the dynamic properties of soft tissues. Nineteen in vitro impact tests are performed on human muscles at three average strain rates ranging from 136/s to 262/s. Muscle tissues are compressed uniaxially up to 50% strain level. Subsequently, finite element simulations replicating the experimental conditions are executed using the PAM-CRASH™, explicit finite element solver. The material properties of the muscles, modelled as linear isotropic viscoelastic material, are identified using inverse finite element mapping of test data using Taguchi methods. Engineering stress - engineering strain curves from experimental data and finite element models are computed and compared during identification of material properties at the above mentioned strain rates. Response of finite element models, with extracted material properties, falls within experimental corridors indicating the validation of the methodology adopted.
Technical Paper

Repositioning Methodology For FE-HBM Pelvis Flesh To Account For Upper Extremity Posture Change

2011-04-12
2011-01-0256
Many research groups are developing Human Body FE Models (FE-HBM) as a tool to be used in safety research. The FE-HBM's currently available are in certain fixed postures. Repositioning of model in alternate postures is needed for use in out of position (OOP) occupant simulations and different pedestrian posture simulations. Postural change in upper extremity can be split two processes, viz, repositioning of spinal vertebra and repositioning of the soft tissue associated with the spine. The objective of this study is to establish a methodology to regenerate pelvis flesh with change in spine/pelvis position. The outer profile of the pelvis flesh should ideally be parametrically described with respect to the associated hard tissues which is not the case in existing FE-HBM's. The affine invariant (Farin, 1990) property of cubic Bezier curves is used in this study.
X