Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Influence of DISH, Ankylosis, Spondylosis and Osteophytes on Serious-to-Fatal Spinal Fractures and Cord Injury in Rear Impacts

2019-04-02
2019-01-1028
Seats have become stronger over the past two decades and remain more upright in rear impacts. While head restraints are higher and more forward providing support for the head and neck, serious-to-fatal injuries to the thoracic and cervical spine have been seen in occupants with spinal disorders, such as DISH (diffuse idiopathic skeletal hyperostosis), ankylosis, spondylosis and/or osteophytes that ossify the joints in the spine. This case study addresses the influence of spinal disorders on fracture-dislocation and spinal cord injury in rear impacts with relatively upright seats. Nineteen field accidents were investigated where serious-to-fatal injuries of the thoracic and cervical spine occurred with the seat remaining upright or slightly reclined. The occupants were lap-shoulder belted, some with belt pretensioning and cinching latch plate.
Journal Article

Rear-End Impacts - Part 2: Sled Pulse Effect on Front-Seat Occupant Responses

2022-03-29
2022-01-0854
This study was conducted to assess the effects of differing rear impact pulse characteristics on restraint performance, front-seat occupant kinematics, biomechanical responses, and seat yielding. Five rear sled tests were conducted at 40.2 km/h using a modern seat. The sled buck was representative of a generic sport utility vehicle. A 50th percentile Hybrid III ATD was used. The peak accelerations, acceleration profiles and durations were varied. Three of the pulses were selected based on published information and two were modeled to assess the effects of peak acceleration occurring early and later within the pulse duration using a front and rear biased trapezoidal characteristic shape. The seatback angle at maximum rearward deformation varied from 46 to 67 degrees. It was lowest in Pulse 1 which simulates an 80 km/h car-to-car rear impact.
X