Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Comparison of the Flow Fields Generated for Spark and Controlled Auto-ignition

2003-05-19
2003-01-1798
Valve timing strategies aimed at producing internal exhaust gas re-circulation in a conventional spark ignition, SI, engine have recently demonstrated the ability to initiate controlled auto-ignition, CAI. Essentially the exhaust valves close early, to trap a quantity of hot exhaust gases in-cylinder, and the fresh air-fuel charge is induced late into the cylinder and then mixing takes place. As a logical first step to understanding the fluid mechanics, the effects of the standard and modified valve timings on the in-cylinder flow fields under motored conditions were investigated. Laser Doppler anemometry has been applied to an optical engine that replicates the engine geometry and different valve cam timings. The cycle averaged time history mean and RMS velocity profiles for the axial and radial velocity components in three axial planes were measured throughout the inlet and compression stroke.
Technical Paper

In-Cylinder Flow Structure Analysis by Particle Image Velocimetry Under Steady State Condition

2012-09-24
2012-01-1975
This paper deals with experimental investigations of the in-cylinder flow structures under steady state conditions utilizing Particle Image Velocimetry (PIV). The experiments have been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and different inlet valve configurations at two pressure drops, 250mm and 635mm of H2O that correlate with engine speeds of 2500 and 4000 RPM respectively. From the two-dimensional in-cylinder flow measurements, a tumble flow analysis is carried out for six planes parallel to the cylinder axis. In addition, a swirl flow analysis is carried out for one horizontal plane perpendicular to the cylinder axis at half bore downstream from the cylinder head (44mm). The results show the advantage of using the planar technique (PIV) for investigating the complete flow structures developed inside the cylinder.
X