Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

2016-06-15
2016-01-1854
The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Technical Paper

An Integrated 3D CFD Simulation Methodology for the Optimization of the Mixture Preparation of 2-Stroke DI Engines

2007-10-30
2007-32-0029
For the development of high-performance 2-stroke engines with internal mixture preparation it is essential to know about the interaction between charge motion and injection spray. With no prototypes available conceptual investigations can only render such information by using 3D CFD simulation. In this way an optimization of mixture preparation and charge motion can be achieved by varying the transfer and boost ports. To allow for the influence of these modifications on the mass balance (volumetric and trapping efficiency), the entire system of the loop-scavenged two-stroke engine has to be investigated. The state of the art calculation domain for 2-stroke 3D CFD simulation is bounded at the inlet of the crankcase (reed valve) and sometimes also at the outlet of the cylinders. The reasons lie in the so far not sufficiently reproducible components (e.g. reed valve) as well as in the reduction of calculation time.
Technical Paper

Basic Investigations on the Prediction of Spray-Wall and Spray-Fluid Interaction for a GDI Combustion Process

2010-09-28
2010-32-0030
This publication covers investigations on different 3D CFD models for the description of the spray wall and droplet-fluid interaction and the influence of these models on the mixture formation calculation results. Basic experimental investigations in a spray chamber and a flow tunnel as well as the corresponding 3D CFD simulation were conducted in order to clarify the prediction quality of the physical phenomena of spray-wall and spray-fluid interaction by the simulation. Influencing parameters such as the piston top temperature, piston bowl geometry, soot deposits on the piston top as well as flow velocity are investigated. This paper provides a direct link between the underlying simulation models of the mixture formation and actual real world combustion system development processes - underlining the importance of a close interaction of the model calibration and the development process.
Journal Article

Evaluation of Valve Train Variability in Diesel Engines

2015-09-06
2015-24-2532
The continuously decreasing emission limits lead to a growing importance of exhaust aftertreatment in Diesel engines. Hence, methods for achieving a rapid catalyst light-off after engine cold start and for maintaining the catalyst temperature during low load operation will become more and more necessary. The present work evaluates several valve timing strategies concerning their ability for doing so. For this purpose, simulations as well as experimental investigations were conducted. A special focus of simulation was on pointing out the relevance of exhaust temperature, mass flow and enthalpy for these thermomanagement tasks. An increase of exhaust temperature is beneficial for both catalyst heat-up and maintaining catalyst temperature. In case of the exhaust mass flow, high values are advantageous only in case of a catalyst heat-up process, while maintaining catalyst temperature is supported by a low mass flow.
Journal Article

Experimental and Simulative Friction Analysis of a Fired Passenger Car Diesel Engine with Focus on the Cranktrain

2016-10-17
2016-01-2348
The CO2 reduction required by legislation represents a major challenge to the OEMs now and in the future. The use of fuel consumption saving potentials of friction-causing engine components can make a significant contribution. Boundary potential aspects of a combustion engine offer a good opportunity for estimating fuel consumption potentials. As a result, the focus of development is placed on components with great saving potentials. Friction investigations using the motored method are still state of the art. The disadvantages using this kind of friction measurement method are incorrect engine operating conditions like cylinder pressure, piston and liner temperatures, piston secondary movement and warm deformations which can lead to incorrect measurement results compared to a fired engine. In the past, two friction measurement methods came up, the so called floating liner method and a motored friction measurement with external charging.
Technical Paper

Flow and Engine Test Bench Development of Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-09-27
2004-32-0002
An efficient and low cost way to supercharge a four stroke engine is to use the bottom side of the piston to increase the volumetric efficiency. In comparison to naturally aspirated (NA) engines, this supercharging concept pre-compresses the intake air in the crankcase resulting in a significant increase of torque and power output. On a prototype engine fundamental research activities were carried out on a driven flow test bench to optimize the volumetric efficiency by varying the influencing parameters. Subsequently the characteristics of different mixture preparation concepts (carburetor and fuel injection system) in combination with the treated supercharging concept have been studied during the development phase on engine test bench.
Technical Paper

Hydrogen Hybrid ICE Powertrains with Ultra-Low NOx Emissions in Non-Road Mobile Machinery

2023-04-11
2023-01-0471
In this paper, we will show the potentials of reducing NOx emissions of an H2-ICE to an ultra-low level by hybridizing the H2-ICE in an NRMM powertrain. Real-world measurement data of NRMM together with a simulated hybrid powertrain and operating strategy form the input data for the H2-ICE on the test bench. We have modified a turbocharged four-cylinder in-line gasoline engine for use with directly injected hydrogen. Within several iteration loops, we obtained measurement data that shows that, depending on the operating strategy, ultra-low NOx emissions are reachable. The combination of hybridization, which implies the possibility of recuperation, and the CO2 emission-free H2-ICE leads to a highly efficient, robust, and economic drivetrain with the lowest emissions, perfectly suitable for Non-Road Machinery. Additionally, we will discuss the overall coupled measurement and simulation setup and the reachable NOx emission levels in our tested setup.
Technical Paper

Thermodynamic Analysis of a Crankcase Supercharged Four Stroke Engine with a Two Cycle Lubrication System

2006-04-03
2006-01-0404
An efficient and economical method to increase the performance of four stroke engines can be supercharging by compressing the intake air with the help of the bottom side of the piston. This publication describes parts of a research project with the target to develop a supercharged four stroke engine with a closed loop lubrication system for the crank train also including the lubrication system for the cylinder head. With the help of a thermodynamic engine analysis, the influence of the crankcase pump on the engine performance behavior and the distribution of losses has been researched and discussed, with the supercharged engine being compared to different naturally aspirated competitors.
X