Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Calibration and validation of a numerical model developed to simulate the working conditions of a scooter vehicle on a mission profile

2009-09-13
2009-24-0129
The purpose of the study is to develop a flexible simulation tool that allows coupling the 1-D simulation of the engine with the dynamic simulation of the whole vehicle on which the engine is installed, in order to predict vehicle operating conditions and exhaust emissions during an imposed mission profile. In fact 1-D engine simulation can supply information on engine performance but not on vehicle performance, that strongly depends on the vehicle itself. Therefore vehicle performance simulation needs an integrated engine-vehicle approach. The dynamic model of the vehicle (a scooter with CVT transmission) is built up in Matlab-Simulink while the engine model is realized by means of a 1-D commercial code (WAVE, Ricardo Software). In particular, the Urban Driving Cycle (UDC) of the European Community ECE-40 homologation test (established by the EL) directive 2002/51/CE) for a scooter with CVT transmission and centrifugal clutch is the aim of the simulation activity.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

2010-04-12
2010-01-0354
The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

Optical Characterization of the Combustion Process in a 4- Stroke Engine for 2-Wheel Vehicle.

2009-09-13
2009-24-0055
The match among the increasing performance demands and the stringent requirements of emissions and the fuel consumption reduction needs a strong evolution in the two-wheel vehicle technology. In particular, many steps forward should be taken for the optimization of modern small motorcycles and scooters at low engine speeds and high loads. To this aim, detailed understanding of thermo-fluid dynamic phenomena that occur in the combustion chamber is fundamental. In this work, low-cost solutions are proposed to optimize ported fuel injection spark ignition (PFI SI) engines for two-wheel vehicles. The solutions are based on the change of phasing and on the splitting of the fuel injection in the intake manifold. The experimental activities were carried out in the combustion chamber of a single-cylinder 4-stroke optical engine fuelled with European commercial gasoline. The engine was equipped with a four-valve head of a commercial scooter engine.
Technical Paper

Optimization of a Two Stroke Engine Scavenging Process by a CFD Analysis in order to reduce the Raw Pollutant Emissions

2005-10-12
2005-32-0113
Exhaust emissions have been achieving a huge importance in the last years due to the introduction of more and more restricted environmental and legislation laws on pollutant emissions. The scavenging process of a two stroke engine has been analysed using the Computational Fluid Dynamics (CFD) technique in order to determine the emission of fresh charge in the conditions specified by ECE47 cycle. Different geometries of inlet ports and of combustion chambers have been simulated to obtain a good loop scavenged flow and a consequent reduction of hydrocarbon emissions.
Technical Paper

Optimization of an Internal Combustion Engine for an Hybrid Scooter

2006-11-13
2006-32-0102
A very stringent problem in most of European cities is the individual mobility. This problem is mainly caused by traffic jam and arising from this are two particularly interesting environmental issues: pollution and noise [1]. Use of two wheeler vehicles does not represent the final solution to these problems, nevertheless they can supply a useful aid to ease them. Recently, two stroke engines are being replaced with four stroke engines. For small capacity engines this means a true reduction in exhaust emissions, especially unburned hydrocarbons (HC), but, on the other hand it involves a performance reduction, particularly for sudden accelerations, which constitute an essential requirement for these vehicles [2, 3, 4, 5]. Hybridisation can help to fill the gap between two stroke engines and cleaner, but less performing four stroke engines [6]. At the same time, it can help to lower fuel consumption, by means of a reduction in the revolution speed [2, 5].
X