Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fuel Economy and Cabin Heating Improvements Thanks to Thermal Management Solutions Installed in a Diesel Hybrid Electric Vehicle

2010-04-12
2010-01-0800
With the aim of reducing CO2 emissions, several solutions exist presenting different performances and costs. Hybrid electric vehicle is one of the most efficient solutions and lead to fuel consumption and CO2 emissions reduction of 10 to 60 % compared to conventional vehicle and depending on the level of hybridisation and the considered speed cycle. In the context of the European project Hi-CEPS (Highly integrated Combustion Electric Propulsion System), several thermal management solutions have been investigated with the aim of increasing the global vehicle efficiency and tackling hybrid-vehicle-specific cabin comfort challenges such as cabin heating. Intermittent operation of the engine in a hybrid electric vehicle (Stop & Start, pure electric vehicle mode) has detrimental effects on engine and cabin warm-up.
Technical Paper

Performance Characterisation of a Range of Diesel Oxidation Catalysts: Effect of Pt:Pd Ratio on Light Off Behaviour and Nitrogen Species Formation

2011-09-11
2011-24-0193
Understanding the behavior of automotive catalysts formulations under the wide range of conditions characteristic of automotive applications is key to the design of present and future emissions control systems. Platinum-based oxidation catalysts have been in use for some time to treat the exhaust of diesel-powered vehicles and have, as part of an emissions control package, successfully enabled compliance with emissions legislation. However, progressively stringent legislated limits, coupled with the need to reduce vehicle manufacturing costs, is incessantly demanding the development of new and improved catalyst formulations for the removal of pollutants in the diesel exhaust. With the introduction of low sulfur diesel fuel, and the advantageous decline in Palladium prices with respect to Platinum, bimetallic Pt:Pd-based catalysts have found an application in diesel after treatment.
X