Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of Gasoline Combustion Reaction Model

2013-04-08
2013-01-0887
Gasoline includes various kinds of chemical species. Thus, the reaction model of gasoline components that includes the low-temperature oxidation and ignition reaction is necessary to investigate the method to control the combustion process of the gasoline engine. In this study, a gasoline combustion reaction model including n-paraffin, iso-paraffin, olefin, naphthene, alcohol, ether, and aromatic compound was developed. KUCRS (Knowledge-basing Utilities for Complex Reaction Systems) [1] was modified to produce paraffin, olefin, naphthene, alcohol automatically. Also, the toluene reactions of gasoline surrogate model developed by Sakai et al. [2] including toluene, PRF (Primary Reference Fuel), ethanol, and ETBE (Ethyl-tert-butyl-ether) were modified. The universal rule of the reaction mechanisms and rate constants were clarified by using quantum chemical calculation.
Technical Paper

Evaluation of Ignition Quality of LPG with Cetane Number Improver

2002-03-04
2002-01-0870
The objective of this study is to improve the ignition quality of LPG (liquefied petroleum gas) in order to utilize LPG as a diesel fuel. First, the relationship between the cetane numbers and ignition delay periods of primary standard fuels (mixtures of n-cetane and heptamethylnonane) and diesel fuels were investigated by measuring the ignition delay periods using a constant volume combustion chamber. As a result, it was found that a good relationship between the cetane numbers and ignition delay periods could be obtained for a 550°C combustion chamber temperature and 4MPa pressure. Also, the cetane number estimation equation was established using the ignition delay data of n-paraffins. Next, the constant volume combustion chamber was modified to evaluate the ignition delay period of LPG with a cetane number improver, and these cetane numbers were then estimated.
Technical Paper

Inhibition Effect of Ethanol on Homogeneous Charge Compression Ignition of Heptane

2008-10-06
2008-01-2504
It is important in the application of bio-ethanol in homogeneous-charge compression ignition (HCCI) engines to investigate the HCCI combustion characteristics of ethanol. As the inhibitory mechanism of ethanol on HCCI combustion is a key factor, simulated chemical reactions are necessary. In this study, chemical reaction simulations in the combustion chamber of a rapid compression machine (RCM) were performed in order to investigate the inhibitory mechanism of ethanol on the HCCI combustion of heptane. The sensitivity analysis results suggested that the OH radical consumption reaction by ethanol that occurs would inhibit the cool flame reaction of heptane. Furthermore, visualization of HCCI combustion with the RCM was conducted using a quartz glass combustion chamber head and ICCD camera. As a result, the cool flame luminescence intensity of heptane was reduced by the addition of ethanol.
X