Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-04-16
2012-01-1118
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system.
Technical Paper

A Study of Alcohol Blended Fuels in an Unthrottled Single Cylinder Spark Ignition Engine

2010-04-12
2010-01-0618
This work involved study of the effects of alcohol blends on combustion, fuel economy and emissions in a single cylinder research engine equipped with a mechanical fully variable valvetrain on the inlet and variable valve timing on the exhaust. A number of splash blends of gasoline, iso-octane, ethanol and butanol were examined during port fuel injected early inlet valve closing operation, both with and without variable valve timing. Under low valve overlap conditions, it was apparent that the inlet valve durations/lifts required for full unthrottled operation were remarkably similar for the wide range of blends studied. However, with high valve overlap differences in burning velocities and internal EGR tolerances warranted changes in these valve settings.
Technical Paper

Combining Unthrottled Operation with Internal EGR under Port and Central Direct Fuel Injection Conditions in a Single Cylinder SI Engine

2009-06-15
2009-01-1835
This experimental work was concerned with the combination of internal EGR with an early inlet valve closure strategy for improved part-load fuel economy. The experiments were performed in a new spark-ignited thermodynamic single cylinder research engine, equipped with a mechanical fully variable valvetrain on both the inlet and exhaust. During unthrottled operation at constant engine speed and load, increasing the mass of trapped residual allowed increased valve duration and lift to be used. In turn, this enabled further small improvements in gas exchange efficiency, thermal efficiency and hence indicated fuel consumption. Such effects were quantified under both port and homogeneous central direct fuel injection conditions. Shrouding of the inlet ports as a potential method to increase in-cylinder gas velocities has also been considered.
Journal Article

Effects of Injection Timing on CAI Operation in a 2/4-Stroke Switchable GDI Engine

2011-08-30
2011-01-1773
A single cylinder direct injection gasoline engine has been developed and commissioned on a transient engine test bed in order to study different engine cycles and combustion modes with identical hardware and operating conditions. The engine can be operated in either 4-stroke cycle or 2-stroke cycle by means of an electro-hydraulic camless system. In addition, both spark ignition and controlled autoignition (CAI) combustion can be achieved. In this paper, effects of the injection timing on different CAI combustion modes are investigated, including the residual gas trapping and exhaust gas rebreathing CAI operations in 4-stroke mode, and also 2-stroke CAI operation, with a stoichiometric air fuel ratio and homogeneous charge used throughout. The performance and emission data are presented and analysed as a function of the injection timing. Results show that the charge cooling effect on the intake flow rate is dependent upon the in-cylinder temperature at the time of injection.
Technical Paper

Exhaust Gas Recirculation for Improved Part and Full Load Fuel Economy in a Turbocharged Gasoline Engine

2006-04-03
2006-01-0047
The work was concerned with the use of exhaust gas recirculation to minimise CO2 and pollutant emissions over a wide operating range in a multi-cylinder research engine. Under part-load conditions a combination of internal and external EGR was used to invoke controlled auto ignition combustion and improve fuel consumption. Outside the CAI regime, small additional fuel savings could be made by employing reduced EGR rates in spark ignition combustion mode. At boosted high load conditions a comparison of excess fuel, excess air and cooled external EGR charge dilution was made. It was apparent that cooled EGR was a more effective suppressant of knock than excess air, with combustion phasing further advanced towards the optimum and improved combustion stability achieved over a wider operating range. The full load emissions reduction potential of EGR was also demonstrated, with emissions of CO2 reduced by up to 17% and engine-out HC and CO decreased by up to 80%.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

The Effects of Combined Internal and External Exhaust Gas Recirculation on Gasoline Controlled Auto-Ignition

2005-04-11
2005-01-0133
A combination of internal and external exhaust gas recirculation has been used to increase the attainable load in a multi-cylinder engine operated in gasoline controlled auto-ignition. The amount of residual gas trapped in the cylinder was adjusted via the negative valve overlap method. The flow of externally re-circulated exhaust gas was varied using a typical production level valve. Under stoichiometric fuelling conditions, the highest output achieved using internal exhaust gas was limited by excessive pressure rise and unacceptable levels of knock. Introducing additional external exhaust gas was found to retard ignition, reduce the rate of heat release and limit the peak knocking pressure. In turn, an increase in engine load of 20-65% was achieved, with greatest benefit governed by combustion stability limits and realised at lower engine speeds.
X