Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Automatic Generation of Online Optimal Energy Management Strategies for Hybrid Powertrain Simulation

2017-09-04
2017-24-0173
Due to more and more complex powertrain architectures and the necessity to optimize them on the whole driving conditions, simulation tools are becoming indisputable for car manufacturers and suppliers. Indeed, simulation is at the basis of any algorithm aimed at finding the best compromise between fuel consumption, emissions, drivability, and performance during the conception phase. For hybrid vehicles, the energy management strategy is a key driver to ensure the best fuel consumption and thus has to be optimized carefully as well. In this regard, the coupling of an offline hybrid strategy optimizer (called HOT) based on Pontryagin’s minimum principle (PMP) and an online equivalent-consumption-minimization strategy (ECMS) generator is presented. Additionally, methods to estimate the efficiency maps and other overall characteristics of the main powertrain components (thermal engine, electric motor(s), and battery) from a few design parameters are shown.
Technical Paper

Model-based Compensation of the Injector Dynamics for Multiple-Injection Combustion Patterns

2007-09-16
2007-24-0071
The paper presents a new control strategy to compensate the mutual influence of multiple injections in diesel and HCCI engines. The approach is based on a control-oriented model of the process, which represents the dependencies between injection timing, rail pressure, and masses injected. The model is conveniently inverted to yield the injection timing required to obtain a desired mass pattern. The model-based compensator developed is calibrated against measurements taken both on a dedicated injection bench and on a HCCI engine test bench. The compensator is then implemented in the control unit of the latter and validated against measurements of fuel consumption.
Technical Paper

Modular Methodology to Optimize Innovative Drivetrains

2013-09-08
2013-24-0080
In this paper, an integrated simulation-based methodology demonstrating feasibility and performance of several electric-hybrid concepts is developed. Several advanced tools are coupled to define the specifications of each component of the hybrid powertrain, to select the most promising hybrid architecture and finally to assess the proposed powertrain with regard to CO2 and pollutants emissions. Concurrent minimization of NOx and CO2 emissions enables to find the best compromise to fulfil Euro 6 standards while lowering fuel consumption. This stage consists in an iterative co-optimization of the power split strategies between the electric drive and the Diesel engine and of the engine settings (injection pressure, EGR rate, etc.). The methodology combines optimal control laws and optimization methodology based on global statistical models using single-cylinder design of experiments. After several iterations, this method allows to find the optimal NOx/CO2 trade-off curve.
X