Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Design and Implementation of Digital Twin for Predicting Failures in Automobiles Using Machine Learning Algorithms

2019-10-11
2019-28-0159
The drastic technological advancements in the field of autonomous vehicles and connected cars lead to substantial progression in the commercial values of automobile industries. However, these advancements force the Original Equipment Manufacturers (OEMs) to shift from feedback-based reactive business analysis to operational-data based predictive analysis thereby enhancing both the customer satisfaction as well as business opportunities. The operational data is nothing but the parameters obtained from several parts of an automobile during its operation such as, temperature in radiator, viscosity of the engine oil and force applied over the brake disk. These operational data are gathered using several sensors implanted in different parts of an automobile and are continuously transmitted to backend computers to develop Digital Twin, which is a virtual model of the physical automobile.
Technical Paper

Evaluation and Comparison of Mechanical Properties of PETG and CF - PETG Fabricated using FDM Process of Additive Manufacturing

2021-10-01
2021-28-0208
The utilization of Additive Manufacturing (AM) technology in the current manufacturing sector is growing day - by - day. This is made possible by the constant development of new materials and techniques to overcome the difficulties that are encountered while fabricating a part. In AM, parts are fabricated by laying successive layers on one another till the complete part is build. This gives AM an edge over conventional manufacturing. Even intricate or hollow parts can be fabricated with the same ease as fabricating a solid part. The key objective of this project is to evaluate and compare mechanical properties of Polyethylene Terephthalate - Glycol modified (PETG) and Carbon fiber reinforced Polyethylene Terephthalate - Glycol modified (CF - PETG), which are fabricated using Fused Deposition Modelling (FDM) process of AM. The ASTM standards D638 and D790 were followed for fabricating tensile test and Flexural test specimens respectively.
Technical Paper

Experimental Study and CFD Analysis of an Aerofoil Structure for Automotive Body Design

2018-07-09
2018-28-0091
A study of an aerofoil structure used for automotive body design is being conducted and an experiment has been performed to determine the lift and drag forces produced by it by varying its Angle of Attack. The NACA0018 and NACA0015 aerofoil with a chord length of 16 cm were used for this study. Then an analysis was done with the help of (CFD) computational fluid dynamics. The results obtained by CFD analysis where compared by the experimental results which was performed on wind tunnel using NACA0018 aerofoil. The results are then presented graphically, showing pressure and velocity distributions lift and drag coefficients for the different cases which will be useful for design of automotive body structures.
Technical Paper

Fatigue Life Prediction of Heavy Duty Automobile’s Brake Drum through Coupled Thermo-Mechanical Analysis

2019-10-11
2019-28-0031
The aim of this paper is to demonstrate the methodology to simulate the induced stresses/strains due to thermo-mechanical loading of automobile brake drum.. The brake drum undergoes mechanical load due to applied brake pressure and thermal load due to friction generated between brake pad and brake drum while brake is applied. This coupled thermo-mechanical loading affects the life of the brake drum as the stiffness of the brake drum is reduced. The conventional method of simulating this problem is done using Lagrangian discretization in which the load is applied and inertia effect due to angular velocity is applied to a drum at static condition. In contrast, in this paper Eulerian discretization is adopted for finite element analysis, in which drum brake model is discretized as spatially dependent that facilitates actual rotation of brake drum with simultaneous application of brake load resulting more precise simulation.
Technical Paper

Influence of Coating Thickness and Operating Parameters on the Tribological Characteristics of Inconel 625 Components Fabricated Using DMD

2017-07-10
2017-28-1972
Direct Metal Deposition (DMD) is a rapid prototyping technique used to fabricate and repair metallic prototypes. It can be used in the production of complex geometries and unique parts. In functional automotive applications wear characteristics hold key importance. In the present study, an analysis on the influence of various parameters (coating thickness, load and temperature) on the wear characteristics of Direct Metal Deposited (DMD) Inconel 625 coating has been carried out using a Design of Experiments (DOE). ANOVA calculations were performed to find out which of these parameters showed significant influence on the wear properties. It was found that load was the most significant parameter influencing the wear characteristics .Similarly load was found to be most influencing parameter for co efficient of friction. The trend was found to follow when verified at 30 second, 3 minutes, 60 minutes and 120 minutes.
Technical Paper

Investigations on Dimensional Analysis of Fused Filament Fabrication of Wax Filament by Taguchi Design

2019-10-11
2019-28-0133
Experimental investigations were carried out on the machinable wax filament using the fused deposition modelling (FDM) rapid prototyping process. The printer used for conducting the experiments was Flash Forge guider 2. The filament material used for this study was machinable wax filament of 1.75 mm diameter. Experimental trials were carried out as per Taguchi L9 orthogonal array to determine the optimum process parameter combination. The dimensional analysis of test samples were carried out in terms of change in volume of samples which is result of combine effect of deviations in all the dimensions of test sample. Four factors each at three levels was used to obtain the optimum printing parameters for better dimensional accuracy and proper printing. The four important printing parameters were taken as factor and set to analyse the significant factor affecting on printing. The complexity in printing of wax filament is taken in to consideration during the experimental study.
Technical Paper

Investigations on the Wear Rate Properties on 3D Printed Carbon Fiber Reinforced PLA

2021-10-01
2021-28-0239
Fiber-reinforced polymer composites propose exceptional directional mechanical properties, and combining their advantages with the potential of 3D printing has resulted in many novel research fronts. Industries have started using 3D printed components which are rapidly replacing conventional material components in most of the industries. Carbon fiber reinforced Polylactic Acid (PLA) often finds its application in reasonably high loading conditions working at lesser speed like lightweight gears, spanners, nuts, and bolts. Wear reduction is an important factor that plays an important role in prolonging the component's life. Hence, it is crucial to optimize 3D printing parameters to get desired strength according to the application. The aim of this paper is to conduct the wear rate test on the Fused Deposition Modelled (FDM) printed carbon fiber reinforced PLA parts, to identify the optimum printing parameters which are crucial for wear reduction.
Technical Paper

Modeling and Simulation for Hybrid Electric Vehicle with Parallel Hybrid Braking System for HEV

2018-07-09
2018-28-0097
A model for Hybrid electric vehicle power train with parallel hybrid braking system has been constructed. The hybrid vehicle utilized is based on integrated motor assist power train developed by Honda co utilized in Honda Insight car. The model is implemented using empirical formulation and power control schemes. A power control strategy based on throttle position (% throttle) and brake pedal position (% braking) is used. It incorporates the parallel hybrid braking system for the hybrid electric vehicle. The model allows for real time evaluation of wide range of parameters in vehicle operation as HEV without parallel hybrid braking system (PHBS) and with PHBS. Due to regenerative braking the structure design and control of braking system for HEV is different from conventional vehicle. The PHBS is the good option to provide safety of the vehicle and simultaneously recover reasonable amount of braking energy.
Technical Paper

Parametric Optimization of Friction Stir Welded AA2024 using Regression Methods

2021-10-01
2021-28-0223
The developed model analysis is built in matrix runs to optimise the friction stir welding parameters of rotational speed, welding speed, shoulder diameter and tilt angle in this research. The aim of any design is to maximise the welded properties, either to surpass the base metal properties. The model that is created is the product of a number of regression methods that have been tested for adequacy. In this model we have taken three levels of varying parameters shoulder diameters, rotational speed, welding speed. Mathematical model is developed for the effect of three process parameter at three levels using response surface methodology (RSM).
Technical Paper

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

2019-10-11
2019-28-0119
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed. The results shows that the deflection at the centre of upper and lower bolster was due to bending and applied load. The modal analysis predicted the natural frequencies by using block lanczos method.
Technical Paper

Study of Elastic Axis Decoupling in Engine and Gearbox Mounting on the Vehicle Chassis

2018-07-09
2018-28-0090
The elastic axis decoupling to offset the elastic center of the automotive engine mounting system towards the center of gravity of the power-train is studied. General procedure of diagonalization of stiffness matrix which is a factor of the principle stiffness, coupled stiffness, position and inclination of engine mounts is analysed. Maintaining symmetry of the mounting system to ensure functional characteristics the elastic axis decoupling can be achieved by simplification to few factors of relative stiffness ratios, relative position ratios and multiplication factors. The effect of CG shift from the plane of symmetry on the coupling of the modes of vibration can be seen. The inevitability of perfect elastic axis decoupling can be assessed to achieve the optimal partial elastic axis decoupling required to the designers need.
Technical Paper

Study on Wear Properties of Cryogenic Treated Additive Manufactured SLS Components

2020-09-25
2020-28-0449
This study examines the influence of cryogenic treatment on the microstructure and on the physical properties of the rapid prototype SLS material. The wear properties of the rapid prototype SLS material both before and after cryogenic treatment are studied in three phases. Phase I deals with the sample preparation through the SLS technique; Phase II involves the preliminary tests like roughness test, hardness test, SEM and wear test. Phase III is the cryogenic treatment of the sample in the setup designed. The cryogenic coolant used is Nitrogen, having a boiling point of 77 K, and the whole treatment process takes about 2 to 3 days. Phase IV deals with the testing of the cryogenically treated samples in which similar tests to that in Phase I are carried out. These results are tabulated and graphs are plotted. Furthermore, the percentage change in the hardness and wear properties of the samples are found.
Technical Paper

Study on the High Temperature Tensile Properties of Aerospace Grade Hastelloy X Joined by Pulsed Current Arc Welding

2020-09-25
2020-28-0421
The fabrication or repairing of aircraft components made of Hastelloy X to be resolved using an arc welding technique. In this study, Hastelloy X was joint with ERNiCrCoMo-1 filler by pulsed current gas tungsten arc (PCGTA) welding. The high temperature tensile property of the weldment has been evaluated at three different temperatures such as 700 °C, 800 °C and 900 °C. The tensile properties such as yield strength (294, 259 and 205 MPa), ultimate tensile strength (475, 396 and 245 MPa) and percentage of elongation or ductility (17, 14 and 11 %) follows the similar trend with temperature at 700 °C, 800 °C and 900 °C respectively. It revealed the values of all the properties are decreased as the temperature increased. The lowest strength was evaluated for weldment at 900 °C. The high temperature tensile test also revealed that the fracture of weldments for all three conditions is found at the weld centre (WC).
X