Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

04Road Feel Feedback Design for Vehicle Steer-by-Wire via Electric Power Steering

2013-11-27
2013-01-2898
A new road feel feedback control design of steer-by-wire (SBW) is proposed, which is produce the steering feel of conventional vehicle with equipped electronic power steering (EPS) system, due to SBW system removes mechanical linkages between steering system and front wheels. A dynamic model is established to study the road feel generation and deal with the need of computed rack force of steer system. Based on the analysis of the assisting characteristic and the active damping control strategy of the EPS system, an integrated road feel algorithm is proposed. For rack force is difficult to measure, an estimator is presented to estimate rack force by Kalman filter (KF). The hardware-in-the-loop simulation (HILS) test bench results show that the proposed road feel control design make drivers get road feel information and SBW system can improve the vehicle maneuverability and comfortably.
Journal Article

Bilateral Control Method of Torque Drive/Angle Feedback Used for Steer-by-Wire System

2012-04-16
2012-01-0792
Steer-by-Wire system is capable of improving the performance of vehicle handling and stability, and assisting driving. It becomes a key technique to control front wheel angle and simulate the steering resistance delivered to the driver because of removing mechanical linkages between the steering wheel and the front wheels. This paper proposes a bilateral control method of steering wheel torque drive/pinion angle feedback, which is disaccustomed of controlling steering wheel block and steering actuator as master-slave plants. The pinion angle, steering wheel angle and its torque signals are used in the control logic without estimating or measuring the tire/road force. Simulations and vehicle experiments proceeded with this proposed method and the results confirmed that it achieves the bilateral control of the position and torque between the two plants.
Technical Paper

The Design of Electrically Controlled Steering System Hardware-In-the-Loop Test Bench

2014-04-01
2014-01-0243
Nowadays, conventional steering system cannot meet consumers' requirements as their environmental awareness increasing. Electrically controlled steering system can solve this problem well [1] [2]. Electrically controlled steering system has been not only applied widely in automobile steering technique but also becomes an important section of automobile integrated chassis control technology. It is necessary for vehicles to test their every component repeatedly before every component assembled. So a test bench becomes an essential part for vehicle products' design and improvement. The electrically controlled steering system consists of Electric Power Steering system (EPS), Active Front Steering (AFS) and Steer by Wire (SBW). The similarity among them is containing pinion-and-rack mechanical structure, so it is viable to design a test bench suitable for these three systems. This paper takes EPS as a prototype to verify the design's availability.
Technical Paper

The Resistance Loading System of Electronic Control Steering System Performance Test Bench

2014-04-01
2014-01-0230
Nowadays, electric control steering system has been a main tendency. It consists of Electric Power Steering (EPS) system, Steer by Wire (SBW) system and Active Front Steering (AFS) system. EPS is more widely applied and its technology is more developed. By 2010, the cars equipped with EPS have reached almost 30%. This paper describes one integrated test bench which can test and verify electric control steering system. The main target of the paper is to design and set up a resistance loading system for the test bench referred. The paper takes EPS as a prototype to verify the designed resistance loading system. If the resistance loading system provides a precise simulated torque for the bench, the results of tests will be more approximate with vehicle tests and the acquired data will be reliable for electric control steering system's design and improvement. The linear electric cylinder applied in the loading system is used to provide simulated torque for the bench.
Technical Paper

The Tri-Core Fault-Tolerant Control for Electronic Control Unit of Steer-By-Wire System

2011-04-12
2011-01-1006
In order to solve the reliability and security problems which are caused by the structural alteration of the traditional steering system, the fault-tolerant control method for the Electronic Control Unit of Steer-By-Wire system is studied in this paper. A hardware structure of SBW, with triple cores and dual motors is present. And one triple-loop control system and a triple-core control mechanism which is coordinated by distributed processing mechanism and voting mechanism are proposed too. The communication among steering feeling motor, steering motor and cores is achieved through FlexRay bus. The Hardware-in-loop Simulations test result shows that the reliability and safely of the Electronic Control Unit of Steer-By-Wire system is effectively improved.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
X