Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of an Electric Medium Duty Commercial Demonstration Vehicle

2024-04-09
2024-01-2159
To better understand the technical challenges of commercial vehicle electrification, BorgWarner converted a production Internal Combustion Engine (ICE) medium duty truck into a fully electrified vehicle. The resulting vehicle includes a newly developed dual-motor rear Beam eAxle driven by a pair of high-performance silicon carbide (SiC) inverters, an 800V battery system, and a new thermal management system customized for the electric vehicle. This paper will detail the conversion process along with the key components involved in the build. The resulting performance of the fully electrified commercial vehicle will be presented in comparison to the original production vehicle. The primary aim is to outline what is entailed in an electric vehicle conversion and to share the learnings gained throughout this build and development process.
Technical Paper

Physics-Based Modeling and Transient Validation of an Organic Rankine Cycle Waste Heat Recovery System for a Heavy-Duty Diesel Engine

2016-04-05
2016-01-0199
This paper presents an Organic Rankine Cycle (ORC) system model for heavy-duty diesel (HDD) applications. The dynamic, physics-based model includes: heat exchangers for parallel exhaust and EGR circuits, compressible vapor working fluid, distribution and flow control valves, a high pressure pump, and a reservoir. A finite volume method is used to model the evaporator, and a pressure drop model is included to improve the accuracy of predictions. Experimental results obtained on a prototype ORC system are used for model calibration and validation. Comparison of predicted and measured values under steady-state conditions is pursued first, followed by the analysis of selected transient events. Validation reveals the model’s ability to track real-world temperature and pressure dynamics of the ORC system. Therefore, this modeling framework is suitable for future system design studies, optimization of ORC power generation, and as a basis for development of control-oriented ORC models.
Technical Paper

Vehicle Control Development - Converting a Medium-Duty Commercial Truck into a Battery Electric Vehicle

2024-04-09
2024-01-2047
The transition towards electrification in commercial vehicles has received more attention in recent years. This paper details the conversion of a production Medium-Duty class-5 commercial truck, originally equipped with a gasoline engine and 10-speed automatic transmission, into a battery electric vehicle (BEV). The conversion process involved the removal of the internal combustion engine, transmission, and differential unit, followed by the integration of an ePropulsion system, including a newly developed dual-motor beam axle that propels the rear wheels. Other systems added include an 800V/99 kWh battery pack, advanced silicon carbide (SiC) inverters, an upgraded thermal management system, and a DC fast charging system. A key part of the work was the development of the propulsion system controls, which prioritized drivability, NVH suppression, and energy optimization.
X