Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multi Layered Zirconia Oxygen Sensor with Modified Rhodium Catalyst Electrode

1988-02-01
880557
This paper describes the design and operation of the multi-layered zirconia heated exhaust gas oxygen sensor having small-sized and sheet-shaped sensing element. This sensor uses an electrode modified with a rhodium catalyst and heater by means of the thick-film technique. This modification of an electrode's composition and construction affects the reaction on unburned components in exhaust gas as well as the sensor performance. By the addition of a rhodium catalyst, the zirconia exhaust gas oxygen sensor shows acute sensitivity and faster response properties in the transient state on emission component(NOx) generation, in such a way that these sensors show better emission control properties for reduction of NOx emission in current emission control systems. The addition of a rhodium catalyst reduces the green effect of sensor properties, and no significant change of emission control properties is observed after 50,000 equivalent miles using the engine dynamometer durability test.
Technical Paper

Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration

1998-02-01
980170
A practical ZrO2 NOx sensor using dual oxygen pumping cells has been introduced for the control of NOx emitted from a lean-burn gasoline engine and diesel engine.(1),(2). However, the measuring accuracy was not high enough to be useful for controlling or monitoring a low level of NOx concentration such as several tens ppm behind a three way catalyst or lean NOx catalyst which is NOx adsorption or De-NOx catalyst. This paper describes improvement of the interference effect of oxygen in the exhaust gas from the lean-burn gasoline engine and diesel engine. The cause of oxygen dependency is analyzed/revealed and a method of improvement is introduced. The improved NOx sensor has an approximately · · 2% measuring error in the wide range of oxygen concentration on a model gas system, compared to the · ·10% of the previous one.
X