Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

An Experimental Study on the Impact of Biodiesel Origin and Type on the Exhaust Emissions from a Euro 4 Pick-up Truck

2010-10-25
2010-01-2273
This study investigates the impact of mid-high biodiesel blends on the criteria and PAH emissions from a modern pick-up diesel vehicle. The vehicle was a Euro 4 (category N1, subclass III) compliant common-rail light-duty goods pick-up truck fitted with a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer equipped with CVS, following the European regulations. All measurements were conducted over the certification New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel, a palm-based biodiesel, and an oxidized biodiesel obtained from used frying oils were blended with a typical automotive ultra-low-sulfur diesel at proportions of 30, 50 and 80% by volume. The experimental results revealed that CO₂ emissions and fuel consumption exhibited an increase with biodiesel over all driving conditions.
Journal Article

Regulated and Unregulated Emissions of a Euro 4 SUV Operated with Diesel and Soy-based Biodiesel Blends

2009-11-02
2009-01-2690
In this study, regulated, unregulated exhaust emissions and fuel consumption with ultra low sulphur diesel and soy-based biodiesel blends at proportions of 10 and 30% v/v have been investigated. A Euro 4 compliant SUV, equipped with a 2.2 litre common-rail diesel engine and an oxidation catalyst was tested on a chassis dynamometer with constant volume sampling (CVS) technique. Emission and fuel consumption measurements were performed over the New European Driving Cycle (NEDC) and the non-legislated Artemis driving cycles which simulate urban, rural, and highway driving conditions in Europe. The regulated pollutants were characterized by determined NOx, PM, CO, and HC. CO2 was also quantified in the exhaust. Overall, 16 PAHs, 4 nitro-PAHs, 6 oxy-PAHs, 13 carbonyl compounds and particulate alkanes ranged from C13 to C35 were determined in the exhaust.
X