Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of New Test Method for Evaluating HCCI Fuel Performance

2014-10-13
2014-01-2667
This study examines fuel auto-ignitability and shows a method for determining fuel performance for HCCI combustion by doing engine experiments. Previous methods proposed for characterizing HCCI fuel performance were assessed in this study and found not able to predict required compression ratio for HCCI auto-ignition (CRAI) at a set combustion phasing. The previous indices that were studied were the Octane Index (OI), developed by Kalghatgi, and the HCCI Index, developed by Shibata and Urushihara. Fuels with the same OI or HCCI Index were seen to correspond to a wide range of compression ratios in these experiments, so a new way to describe HCCI fuel performance was sought. The Lund-Chevron HCCI Number was developed, using fuel testing in a CFR engine just as for the indices for spark ignition (research octane number and motor octane number, RON and MON) and compression ignition (cetane number, CN).
Technical Paper

Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

2010-04-12
2010-01-1122
Effects of six different fuels on low temperature premixed compression ignition (PCI) combustion were experimentally investigated in this paper with a light-duty HSDI engine. The PCI combustion concept reduces NOx and smoke emissions simultaneously by low temperature and premixed combustion, respectively. To achieve low temperature and premixed combustion, the ignition delay is prolonged and the injection duration is shortened. Six fuels were chosen to examine the influence of cetane number (CN) and other fuel properties on low temperature PCI combustion. The fuel selection also included a pure Gas- to-Liquid (GTL) fuel and a blend of base diesel and 20% soy based biodiesel (B20). Fuel effects were studied over a matrix of seven part load points in the low temperature combustion mode. The seven part load points were specified by engine speed (RPM) and brake mean effective pressure (BMEP).
Journal Article

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

2009-11-02
2009-01-2769
The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and1H/13C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT™) apparatus.
X