Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

2013-04-08
2013-01-0608
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Technical Paper

Local Strain Measurement in a Strip Cast Automotive Aluminum Alloy Sheet

2005-04-11
2005-01-0492
Local strain measurement based on digital image correlation at both macroscopic and microscopic scales is presented. A speckle pattern was used for the macroscopic strain mapping to reveal the inhomogeneous deformation processes occurring during tensile deformation of a strip cast automotive aluminum sheet. Moreover, a novel microscopic strain mapping technique based on scanning electron microscopic (SEM) topography image correlation was introduced for strain mapping down to the grain level. The SEM images taken from an in-situ tensile sample of the same material within a field emission SEM chamber are used to demonstrate the validity of the method. The results clearly reveal the evolution of local strain of order of one as well as the formation of shear band in the material.
X