Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

HCCI Heat Release Data for Combustion Simulation, Based on Results from a Turbocharged Multi Cylinder Engine

2010-05-05
2010-01-1490
When simulating homogenous charge compression ignition or HCCI using one-dimensional models it is important to have the right combustion parameters. When operating in HCCI the heat release parameters will have a high influence on the simulation result due to the rapid combustion rate, especially if the engine is turbocharged. In this paper an extensive testing data base is used for showing the combustion data from a turbocharged engine operating in HCCI mode. The experimental data cover a wide range, which span from 1000 rpm to 3000 rpm and engine loads between 100 kPa up to over 600 kPa indicated mean effective pressure in this engine speed range. The combustion data presented are: used combustion timing, combustion duration and heat release rate. The combustion timing follows the load and a trend line is presented that is used for engine simulation. The combustion duration in time is fairly constant at different load and engine speeds for the chosen combustion timings here.
Technical Paper

HCCI Operating Range in a Turbo-charged Multi Cylinder Engine with VVT and Spray-Guided DI

2009-04-20
2009-01-0494
Homogenous charge compression ignition (HCCI) has been identified as a promising way to increase the efficiency of the spark-ignited engine, while maintaining low emissions. The challenge with HCCI combustion is excessive pressure rise rate, quantified here with Ringing Intensity. Turbocharging enables increased dilution of the charge and thus a reduction of the Ringing Intensity. The engine used is an SI four cylinder base with 2.2L displacement and is equipped with a turbocharger. Combustion phasing control is achieved with individual intake/ exhaust cam phasing. Fuel injection with spray guided design is used. Cycle resolved combustion state is monitored and used for controlling the engine either in closed or open loop where balancing of cylinder to cylinder variations has to be done to run the engine at high HCCI load. When load is increased the NOx levels rise, the engine is then run in stoichiometric HCCI mode to be able to use a simple three-way catalyst.
Journal Article

The Effect of Intake Temperature in a Turbocharged Multi Cylinder Engine operating in HCCI mode

2009-09-13
2009-24-0060
The operating range in HCCI mode is limited by the excessive pressure rise rate and therefore high combustion induced noise. The HCCI range can be extended with turbocharging which enables increased dilution of the charge and thus a reduction of combustion noise. When the engine is turbocharged the intake charge will have a high temperature at increased boost pressure and can then be regulated in a cooling circuit. Limitations and benefits are examed at 2250 rpm and 400 kPa indicated mean effective pressure. It is shown that combustion stability, combustion noise and engine efficiency have to be balanced since they have optimums at different intake temperatures and combustion timings. The span for combustion timings with high combustion stability is narrower at some intake temperatures and the usage of external EGR can improve the combustion stability. It is found that the standard deviation of combustion timing is a useful tool for evaluating cycle to cycle variations.
X