Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Occupant Kinematics and Injury Response in Steer Maneuver-Induced Furrow Tripped Rollover Testing

2015-04-14
2015-01-1478
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
Technical Paper

The Effect of Frontal Collision Delta-V and Restraint Status on Injury Outcome

2010-04-12
2010-01-0145
The risk of sustaining injury in frontal collisions is correlated to collision severity as well as other factors such as restraint usage and airbag deployment. Eleven years (1997 to 2007) of National Automotive Sampling System (NASS) data from the Crashworthiness Data System (CDS) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) between 11:00 and 1:00, indicating a frontal collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on factors such as delta-V, restraint system use, and airbag deployment. Each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered separately.
Technical Paper

The Effect of Rear Impact Collision Delta-V and Restraint Status on Injury Outcome

2014-04-01
2014-01-0524
The risk of sustaining injury in rear impact collisions is correlated to collision severity as well as other factors such as restraint usage. The most recent National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) data available (1997 to 2011) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) between 5:00 and 7:00, indicating a rear impact collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on resultant delta-V and restraint system use. Each body region (head, spine, thorax, abdomen, upper extremity, and lower extremity) was considered separately.
Technical Paper

The Effect of Side Impact Collision Delta-V, Restraint Status, and Occupant Position on Injury Outcome

2010-04-12
2010-01-1158
The risk of sustaining injury in side collisions is correlated to collision severity as well as other factors such as restraint usage and occupant position relative to the impact. The most recent National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) data available (1997 to 2007) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) either between 8:00 and 10:00 or between 2:00 and 4:00, indicating a side impact collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on resultant delta-V, restraint system use, and occupant position relative to the impact.
X