Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Combustion of Used Lubricating Oil in a Diesel Engine

2001-05-07
2001-01-1930
In Japan, about 750 million liters of lubricating oil from automobiles and marine engines become waste per year. The authors propose a plan to convert such used lubricating oil (ULO) to effective energy. In detail, some special diesel generator plants should be built and ULO should be burned there after some process. This plan has at least two advantages, i.e. to save the petroleum energy and to avoid the environmental pollution. Aim of this study is to develop the way to utilize ULO for diesel fuel at such a generator plant. Combustion characteristics of ULO are in detail investigated by observation of burning flames in a visual engine and by engine test run. As results of comparison between ULO and heavy fuel oil (HFO), ULO shows rather better ignition quality in the visual engine and lower smoke emission from the running test engine than HFO.
Technical Paper

Diesel Combustion Characteristics of Single Compositions of Fatty Acid Methyl Esters

2005-10-12
2005-32-0042
The diesel combustion characteristics and the exhaust emissions of biodiesel are affected by the composition of fatty acid methyl esters (FAMEs). In this study, the combustion characteristics and the exhaust emissions from single compositions of FAMEs, such as methyl palmitate, methyl oleate and the others, are investigated by using a single cylinder DI diesel engine. Experimental five FAME fuels are neat methyl oleate and the rest are blended mixtures based on methyl oleate. From the experimental results, the ignition delays of saturated FAMEs decrease with longer straight chain of the hydrocarbon molecules while in the same carbon number FAMEs, the ignition delays increase by increasing carbon-carbon double bonds. The break thermal efficiencies of the five FAME fuels and the gas oil are almost the same.
Technical Paper

Multi-Component Modeling of Evaporation, Ignition and Combustion Processes of Heavy Residual Fuel Oil

2009-11-02
2009-01-2677
The present study introduces a multi-component model for heavy fuel oil combustion based on two component approximation, implemented into KIVA-3V using modified evaporation, ignition and combustion models. The fuel is treated as a blend of residual portion and cutter stocks. Different fuel properties are assigned to each component affecting evaporation behavior in the liquid phase as well as ignition and combustion characteristics in the vapor phase. The model was validated regarding spray and flame appearance using photographs of spray combustion in a visual constant volume combustion chamber. Further the effects of fuel component properties on the ignition and combustion properties of the fuel blend have been investigated based on rate of heat release analysis.
Technical Paper

Reduction of Methane Slip from Gas Engines by O2 Concentration Control using Gas Permeation Membrane

2013-10-14
2013-01-2618
With progression of so-called shale gas revolution, gas engines are expected as a strong substitute for diesel engines in marine fields, where strict emission regulations have been recently introduced. Thanks to the sulphur-free and low-carbon features of natural gas, gas engines emit much less CO2 and particulate matter than marine diesels burning heavy fuel oil. The premixed lean-burn gas engines, however, suffer two massive flaws. One is abnormal combustion called knocking and the other is a methane slip, which substantially means the unburned methane emitted into exhaust ports. One of the methane slip sources is thought to be flame quenching inside dead volumes around a combustion chamber or inside a boundary layer near a cylinder wall. Only supportive measures like cutdown of crevice volume have been conducted against the unburned methane.
X