Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Design of a High-Temperature Utility Electromechanical Actuator

2012-10-22
2012-01-2214
Electric actuation on aerospace platforms has significant advantages compared to its hydraulic counterparts, particularly in terms of enhanced reliability, reduced maintenance, advanced diagnostic/performance capabilities, and possibly reduced weight and cost. It is thus not surprising that military and commercial aerospace sectors are introducing more electrical actuation architectures. A logical continuation of this trend is the replacement of hydraulic utility actuators in applications with harsh environments such as wide-range ambient temperatures and high vibration, where hydraulic actuation is still dominating. Such environments provide new challenges to the design of electric actuators, particularly considering that performance, weight, volume, and cost should be competitive with the equivalent hydraulic systems.
X