Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Advanced Modelling of a New Diesel Fast Solenoid Injector and Comparison with Experiments

2004-03-08
2004-01-0019
Upcoming Euro 4 and Euro 5 emission standards are increasing efforts on injection system developments in order to improve mixture quality and combustion efficiency. The target features of advanced injection systems are related to their capability of operating multiple injection with a precise control of the amount of injected fuel, low cycle-by-cycle variability and life drift, within flexible strategies. In order to accomplish this task, injector performance must be optimised by acting on: optimisation of electronic, driving circuit, detailed investigation of different nozzle hole diameter configurations, assessment of the influence of manufacturing errors on hole diameter and inlet rounding on injector performance. The paper will focus on the use of an integrated lump-1D/3D methodology for the design of advanced new fast solenoid Common Rail (C.R.) injector for high speed diesel engines. A lump-model built up in AMESim® environment was used to address the injector design.
Technical Paper

DEVELOPMENT OF COOLING CHARACTERISTICS OF UREA-WATER SOLUTION DOSING MODULES FOR AUTOMOTIVE SCR SYSTEMS

2009-09-13
2009-24-0156
International regulations are challenging automotive industry to develop more efficient systems for reducing diesel engines NOx emissions. Selective Catalytic Reduction systems may be a concrete solution, in fact SCR systems are already on the market, firstly developed for heavy duty diesel engine applications, and now it is beginning the spreading to light automotive applications. The urea-water solution dosing module may be subjected to strong heat transfer, so an efficient heat dissipation is crucial step to avoid injector's severe damages, as deformations of internal components or solenoid's fault. To have a system less complex and consequently less expensive, the dosing module air cooling should be preferred to liquid cooling. Obtain an efficient heat dissipation from the injector holder unit can represent a hard task: consequently dosing module design must be careful.
Technical Paper

Injection System Control for a Multi-Fuel SI Engine

2008-06-23
2008-01-1729
In this paper, the dependency on fuel blends of a four stroke, four cylinder SI engine equipped with a low pressure common rail type injection system is analyzed. With reference to an operating condition using E21 (21% ethanol, 79% gasoline) as a fuel, the experimental performance of the engine are firstly introduced, and the brake power, the specific fuel consumption, the total efficiency, the heating combustion power and the injected mass per stroke dependency on shaft speed are introduced. Then, the multi-fuel injection system actual behavior is predicted by means of a properly tailored lumped and distributed numerical model, whose general reliability is defined mainly in terms of injected mass per stroke. Afterward, the engine performance variation with the fuel mixture is determined, and the adaptation of the PWM control applied to injectors is proposed to compensate the engine operating characteristics.
X