Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Combustion Stability Study with Low Cetane Number Diesel and Biodiesel with 2-EHN Addition under LTC Conditions during Cold/Warm Start and Steady State Conditions

2020-09-15
2020-01-2063
A single cylinder Diesel engine was used to study combustion stability changes from a cetane number improver: 2-EHN. It has been added to a low cetane number diesel and two biodiesels blends with 20 % of SME or RME. All fuels have been raised to a CN of 51 with 2-EHN. Those fuels have been compared to a reference diesel with a CN of 55. Cold and warm start have been recreated for measurements at three conditions: cranking, engine speed increase and idle. Engine coolant temperature has been set to 20°C and 80°C for cold and warm start respectively. 2-EHN effects on combustion stability have been monitored through the IMEP covariance. Under cold-start, only the low cetane number diesel showed combustion stabilities improvements with 2-EHN addition. Moreover, the combustion stability was better than the reference diesel and the heat release rate show an enhancement of the cold flame. On the contrary, the biodiesel fuels exhibited higher IMEP covariances.
Technical Paper

Study on the Effects on Diesel LTC Combustion of 2-EHN as Cetane Improver

2020-04-14
2020-01-1125
A single cylinder Diesel engine was used to study LTC combustion. We evaluated the 2-EthylHexyl Nitrate (2-EHN) as cetane number improver (CNI) distributed by VeryOne@ on the combustion of six diesel fuels. Tested fuels are a low Cetane Number (CN) diesel fuel (CN of 43.7) and two biodiesel mixed at 20% with the low Cetane number diesel fuel: Soybean oil Methyl Ester (B100 SME) and Rapeseed oil Methyl Ester (B100 RME). Each fuels doped with the 2-EHN were prepared to meet the minimum European CN, 51. LTC strategies could provide low NOx emission without thermal efficiency deterioration. The study investigated engine operation at loads of 2, 6 and 10 bar IMEP at engine speed of 1250 rpm, 1500 rpm and 2000 rpm and the impact against synthetic EGR up to 30%. The low-temperature decomposition of 2-EHN, resulting in the oxidation of the fuel, makes it possible to achieve a very low cycle-to-cycle variation of the IMEP even at very low load or at a very high rate of EGR.
X