Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Study of Effects of Design Parameters on Transient Response and Injection Rate Shaping for a Common Rail Injector System

2001-09-24
2001-01-3506
FIRCRI-a flexible injection rate common rail injector was developed. This paper presents the working principle and the configuration of the injector. As key technologies in development of the injector, a new fast response solenoid valve was developed and 4 dimensionless design parameters of hydraulic system were presented by through computer simulation and experimental study. The solenoid valve was deliberately designed so as to eliminate the hydraulic force acting on the valve. Other configuration parameters were also optimized so that the response time of the solenoid valve is 0.3 ms. It is interesting to find that the response time of the injector is not only determined by the solenoid valve, but all parameters of the hydraulic system of the injector. The injector can realize pilot injection, which is less than 2.5mm3, at a controllable phase and multi-injections.
Technical Paper

Experimental and Numerical Study of Diesel HCCI Combustion by Multi-Pulse Injection

2008-04-14
2008-01-0059
Diesel-fueled HCCI combustion was achieved by multi-pulse injection before top dead center (TDC). However, the multi-pulse injections strategies have not been sufficiently studied previously due to the large number of parameters to be considered. In the present work, a series of multi-pulse injection modes with four or five pulses in each mode are designed, and their effects on diesel HCCI Combustion are experimentally studied. The results showed that the HCCI diesel combustion was extremely sensitive to injection mode. There were many modes to achieve very low NOx and smoke emissions, but the injection parameters of these modes must be optimized for higher thermal efficiency. A micro-genetic algorithm coupled with a modified 3D engine simulation code is utilized to optimize the injection parameters including the injection pressure, start-of-first-injection timing (SOI), fuel mass in each pulse injection and dwell time between consecutive pulse injections.
Technical Paper

Research in the Effects of Intake Manifold Length and Chamber Shape on Performance for an Atkinson Cycle Engine

2016-04-05
2016-01-1086
In order to improve the fuel consumption and expand the range of low fuel consumption area of a 1.5L Atkinson cycle PFI engine, the effect of the intake manifold length and chamber shape on the engine performance is investigated by setting up a GT-power (1-D) and an AVL-Fire (3-D) computational model which are calibrated with experimental data. After this the new engine was transformed to the test bench to do the calibration experiment. The results demonstrate that the intake manifold case_1 (the length is 300mm, side intake form) matched with a new designed chamber improves combustion in cylinder with a range 1.6∼7.4g/(kW•h) reduced in fuel consumption of speed that has been studied; the case_3 (the length is 100mm, intermediate intake form) matched with the new designed chamber with a range 3.86∼7g/(kW•h) reduced in fuel consumption of speed that has been studied. Both case_1 and case_3 expand the range of low fuel consumption area significantly.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
X