Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

SI Engine Control in the Cold-Fast-Idle Period for Low HC Emissions and Fast Catalyst Light Off

2014-04-01
2014-01-1366
The engine and its exhaust flow behaviors are investigated in a turbo-charged gasoline direct injection engine under simulated cold-fast-idle condition. The metrics of interest are the exhaust sensible and chemical enthalpy flows, and the exhaust temperature, all of which affect catalyst light off time. The exhaust sensible enthalpy flow is mainly a function of combustion phasing; the exhaust chemical enthalpy flow is mainly a function of equivalence ratio. High sensible and chemical enthalpy flow with acceptable engine stability could be obtained with retarded combustion and enrichment. When split injection is employed with one early and one later and smaller fuel pulse, combustion retards with early secondary injection in the compression stroke but advances with late secondary injection. Comparing gasoline to E85, the latter produces a lower exhaust temperature because of charge cooling effect and because of a faster combustion.
Technical Paper

Using Valve Timing and Exhaust Back Pressure to Improve Catalyst Warm-Up Time

2013-10-14
2013-01-2656
This work examines the effects of valve timing and back pressure on the engine out enthalpy flow which is critical to the light off of the catalyst. The engine behavior is observed under fast-idle condition using a turbocharged production direct injection spark ignition engine with variable cam phasing that could shift both the intake and exhaust valve timing by 50 deg. crank angle. The back pressure is adjusted by throttling the exhaust. The engine operates at a constant net indicated mean effective pressure of 2 bar. The valve timing effect is largely governed by the residual gas trapped. With increasing valve overlap, the exhaust enthalpy flow increases because of the increase in exhaust temperature due to a slower combustion, and of the increase in air and fuel flow to compensate for the lower efficiency due to the slower combustion. When the back pressure is increased, the engine through flow has to increase to compensate for the larger pumping loss.
X