Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Actuator Fault Detection and Diagnosis of 4WID/4WIS Electric Vehicles

2013-10-14
2013-01-2544
A fault detection and diagnosis (FDD) algorithm of 4WID/4WIS Electric Vehicles has been proposed in this study aiming to find the actuator faults. The 4WID/4WIS EV is one of the promising architectures for electric vehicle designs which is driven independently by four in-wheel motors and steered independently by four steering motors. The 4WID/4WIS EVs have many potential abilities in advanced vehicle control technologies, but diagnosis and accommodation of the actuator faults becomes a significant issue. The proposed FDD approach is an important part of the active fault tolerant control (AFTC) algorithm. The main objective of the FDD approach is to monitor vehicle states, find the faulty driving motor and then feedback fault information to the controller which would adopt appropriate control laws to accommodate the post-fault vehicle control system.
Technical Paper

Passive Fault-Tolerant Performance of 4WID/4WIS Electric Vehicles Based on MPC and Control Allocation

2013-09-08
2013-24-0145
The passive fault-tolerant performance of the integrated vehicle controller (IVC) applied on 4WID/4WIS Electric Vehicles has been investigated in this study. The 4WID/4WIS EV is driven independently by four in-wheel motors and steered independently by four steering motors. Thanks to increased control flexibility of the over-actuated architecture, Control Allocation (CA) can be applied to control the 4WID/4WIS EVs so as to improve the handling and stability. Another benefit of the over-actuated architecture is that the 4WID/4WIS Electric Vehicle has sufficient redundant actuators to fight against the safety critical situation when one or more actuators fail.
Technical Paper

The Tri-Core Fault-Tolerant Control for Electronic Control Unit of Steer-By-Wire System

2011-04-12
2011-01-1006
In order to solve the reliability and security problems which are caused by the structural alteration of the traditional steering system, the fault-tolerant control method for the Electronic Control Unit of Steer-By-Wire system is studied in this paper. A hardware structure of SBW, with triple cores and dual motors is present. And one triple-loop control system and a triple-core control mechanism which is coordinated by distributed processing mechanism and voting mechanism are proposed too. The communication among steering feeling motor, steering motor and cores is achieved through FlexRay bus. The Hardware-in-loop Simulations test result shows that the reliability and safely of the Electronic Control Unit of Steer-By-Wire system is effectively improved.
X