Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Demonstration of Vibro-Acoustic Reciprocity including Scale Modeling

2011-05-17
2011-01-1721
The principle of vibro-acoustic reciprocity is reviewed and applied to model sound radiation from a shaker excited structure. Transfer functions between sound pressure at a point in the far field and the velocity of a patch were determined reciprocally both for the to-scale structure and also for a half-scale model. A point monopole source was developed and utilized for the reciprocal measurements. In order to reduce the measurement effort, the boundary element method (BEM) was used to determine the reciprocal transfer functions as an alternative to measurement. Acceleration and sound intensity were measured on patches of the vibrating structure. Reciprocally measured or BEM generated transfer functions were then used to predict the sound pressure in the far field from the vibrating structure. The predicted sound pressure compared favorably with that measured.
Journal Article

Simulation of Enclosures Including Attached Duct Work

2013-05-13
2013-01-1958
Partial enclosures are commonly utilized to reduce the radiated noise from equipment. Often, enclosure openings are fitted with silencers or louvers to further reduce the noise emitted. In the past, the boundary element method (BEM) has been applied to predict the insertion loss of the airborne path with good agreement with measurement. However, an alteration at the opening requires a new model and additional computational time. In this paper, a transfer function method is proposed to reduce the time required to assess the effect of modifications to an enclosure. The proposed method requires that the impedance at openings be known. Additionally, transfer functions relating the sound pressure at one opening to the volume velocity at other openings must be measured or determined using simulation. It is assumed that openings are much smaller than an acoustic wavelength. The sound power from each opening is determined from the specific acoustic impedance and sound pressure at the opening.
X