Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-04-16
2012-01-1032
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles.
Technical Paper

Analytical Calibration of Map-Based Energy Managements of Parallel Hybrid Vehicles

2014-04-01
2014-01-1902
Most energy management systems for hybrid electric vehicles still use rule-based energy management systems that rely on information stored in lookup tables, to define the current mode of operation and set-points for the low-level control laws. Because of the high number of parameters, the calibration of such energy managements can be a cumbersome task for the engineers. Mathematical tools are therefore inalienable to the calibration process. In this paper, it will be demonstrated, how the theory of hybrid optimal control can be used to calculate an initial parameter set for the energy management of charge-sustaining hybrids. The calculation procedure includes the solution of a hybrid optimal control problem to determine the controls for the optimal operation of the vehicle over a given cycle.
X