Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
Technical Paper

Effect of Relative Mixture Strength on Performance of Divided Chamber ‘Avalanche Activated Combustion’ Ignition Technique in a Heavy Duty Natural Gas Engine

2014-04-01
2014-01-1327
This article deals with application of a pre-chamber type ignition device in a heavy duty engine operated with natural gas. A particular pre-chamber ignition strategy called Avalanche Activated Combustion (originally ‘Lavinia Aktyvatsia Gorenia’ in Russian), commonly referred to as LAG-ignition process, has been studied by performing a parametric study of various pre- and main chamber mixture strength combinations. This strategy was first proposed in 1966 and has been mostly applied in light duty automotive engines. A majority of published data are results from developmental studies but the fundamental mechanism of the LAG-ignition process is unclear to date. To the best of authors' knowledge, the study presented in this article is the first generalized study to gain deeper understanding of the LAG-ignition process in heavy duty engines operating with natural gas as fuel for both chambers.
Journal Article

Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated with Pre-Chamber Spark Plug and Dilution with Excess Air and EGR

2012-09-24
2012-01-1980
This article deals with application of turbulent jet ignition technique to heavy duty multi-cylinder natural gas engine for mobile application. Pre-chamber spark plugs are identified as a promising means of achieving turbulent jet ignition as they require minimal engine modification with respect to component packaging in cylinder head and the ignition system. Detailed experiments were performed with a 6 cylinder 9.4 liter turbo-charged engine equipped with multi-point gas injection system to compare performance and emissions characteristics of operation with pre-chamber and conventional spark plug. The results indicate that ignition capability is significantly enhanced as flame development angle and combustion duration are reduced by upto 30 % compared to those with conventional spark plugs at certain operating points.
Technical Paper

Scalability Aspects of Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2016-04-05
2016-01-0796
This article presents a study related to application of pre-chamber ignition system in heavy duty natural gas engine which, as previously shown by the authors, can extend the limit of fuel-lean combustion and hence improve fuel efficiency and reduce emissions. A previous study about the effect of pre-chamber volume and nozzle diameter on a single cylinder 2 liter truck-size engine resulted in recommendations for optimal pre-chamber geometry settings. The current study is to determine the dependency of those settings on the engine size. For this study, experiments are performed on a single cylinder 9 liter large bore marine engine with similar pre-chamber geometry and a test matrix of similar and scaled pre-chamber volume and nozzle diameter settings. The effect of these variations on main chamber ignition and the following combustion is studied to understand the scalability aspects of pre-chamber ignition. Indicated efficiency and engine-out emission data is also presented.
Technical Paper

Statistical Analysis of Fuel Effects on Cylinder Conditions Leading to End-Gas Autoignition in SI Engines

2019-04-02
2019-01-0630
Currently there is a significant research effort being made in gasoline spark/ignition (SI) engines to understand and reduce cycle-to-cycle variations. One of the phenomena that presents this cycle-to-cycle variation is combustion knock, which also happens to have a very stochastic behavior in modern SI engines. Conversely, the CFR octane rating engine presents much more repeatable combustion knock activity. The aim of this study is to assess the impact of fuel composition on the cycle to cycle variation of the pressure and timing of end gas autoignition. The variation of cylinder conditions at the timing of end-gas autoignition (knock point) for a wide selection of cycle ensembles have been analyzed for several constant RON 98 fuels on the CFR engine, as well as in a modern single-cylinder gasoline direct injection (GDI) SI engine operated at RON-like intake conditions.
X