Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparative Study on Effect of Intake Pressure on Diesel and Biodiesel Low Temperature Combustion Characteristics in a Compression Ignition Engine

2013-10-14
2013-01-2533
Owing to the presence of oxygen atoms in biodiesel, the use of this fuel in compression ignition (CI) engines has the advantage of reducing engine-out harmful emissions. In this context, biodiesel fuel can also be used to extend the low temperature combustion (LTC) regime because it inherently suppresses soot formation within the combustion chamber. Therefore, in this study, LTC characteristics of biodiesel were investigated in a single cylinder CI engine; the engine performance and emission characteristics with biodiesel and conventional petro-diesel fuels were evaluated and compared. A modulated kinetics (MK)-like approach was employed to realize LTC operation. The engine test results showed that LTC operation was achieved by retardation of the fuel injection timing. The results also showed that using biodiesel reduced smoke, THC, and CO emissions but increased NOx emissions.
Technical Paper

Experimental study on characteristics of diesel particulate emissions with diesel, GTL, and blended fuels

2009-09-13
2009-24-0098
Various alternative diesel fuels such as gas to liquid (GTL) fuels, blends of diesel and biodiesel (D + BD20), and blends of GTL and biodiesel (G + BD20) were tested in a 2.0 L four-cylinder turbocharged diesel engine. A noticeable reduction in exhaust emissions as compared to diesel fuel, except for NOx emissions, was observed by blending biodiesel with diesel and GTL fuel under selected part load conditions. There was a maximum reduction of 33% for THC emissions and 27% for CO emissions for G + BD20 fuel as compared to diesel fuel. For PM size distributions, a noticeable decrease in the PM number concentration for all particle sizes less than 300 nm was observed with the blending of biodiesel. In contrast, there was a slight increase in the number concentration of PM with diameters of less than 50 nm for the cases of EGR. In the case of particulate matter (PM) mass concentration, there were reductions of 31~59% for D + BD20 fuel and 57~71% for G + BD20 fuel.
X