Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Controlled Hot Surface Ignition in Stationary Petrol and Natural Gas Operation

2012-10-23
2012-32-0006
An operation with a lean air-fuel mixture enables smaller cogeneration gas engines to operate at both high efficiency and low NOx emissions. Conventionally, the combustion process is induced through spark ignition. However, its small reactive mixture volume sets limits on increasing the air-fuel ratio, as a higher dilution reduces mixture inflammability as well as flame propagation speed. In addition, the spark plug durability is limited due to electrode wear, particularly through spark erosion, causing high maintenance costs. The ignition by means of a hot surface has great potential to extend the frequency of servicing intervals as well as to improve the trade-off between engine efficiency and NOx emissions. Compared to conventional spark ignition, ignition by means of a hot surface is achieved by accelerated combustion. The latter is produced by an increased initial reactive mixture volume.
Technical Paper

Numerical Investigations of a Naturally Aspirated Cogeneration Engine Operating with Overexpanded Cycle and Optimised Intake System

2014-11-11
2014-32-0109
Electrical power and efficiency are decisive factors to minimise payoff time of cogeneration units and thus increase their profitability. In the case of (small-scale) cogeneration engines, low-NOx operation and high engine efficiency are frequently achieved through lean burn operation. Whereas higher diluted mixture enables future emission standards to be met, it reduces engine power. It further leads to poor combustion phasing, reducing engine efficiency. In this work, an engine concept that improves the trade-off between engine efficiency, NOx emissions and engine power, was investigated numerically. It combines individual measures such as lean burn operation, overexpanded cycle as well as a power- and efficiency-optimised intake system. Miller and Atkinson valve timings were examined using a detailed 1D model (AVL BOOST). Indicated specific fuel consumption (ISFC) was improved while maintaining effective compression ratio constant.
Journal Article

The Effect of Cooled Exhaust Gas Recirculation for a Naturally Aspirated Stationary Gas Engine

2016-11-08
2016-32-0093
Small natural gas cogeneration engines frequently operate with lean mixture and late ignition timing to comply with NOx emission standards. Late combustion phasing is the consequence, leading to significant losses in engine efficiency. When substituting a part of the excess air with exhaust gas, heat capacity increases, thus reducing NOx emissions. Combustion phasing can be advanced, resulting in a thermodynamically more favourable heat release without increasing NOx but improving engine efficiency. In this work, the effect of replacing a part of excess air with exhaust gas was investigated first in a constant volume combustion chamber. It enabled to analyse the influence of the exhaust gas under motionless initial conditions for several relative air-fuel ratios (λ = 1.3 to 1.7). Starting from the initial value of λ, the amount of CH4 was maintained constant as a part of the excess air was replaced by exhaust gas.
X