Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Evaluation of Nonlinear Estimation Methods for Calibration of a Heat-Release Model

2016-04-05
2016-01-0820
Model-based analysis of in-cylinder pressure sensor signals has been a key component for internal combustion engine research, diagnostics and controller development during the past decades. This analysis is often based on simple thermodynamic models of the in-cylinder processes. In order for the analysis to give accurate results, the models need to be sufficiently calibrated. This paper investigates the use of the extended Kalman filter and the particle filter for the purpose of online estimation of top-dead-center offset, a convective heat-transfer coefficient and cylinder-wall temperature in a Gatowski heat-release model. Simulation results show that the filters are consistent in estimating the true parameters, that the assumed model uncertainty and heat-release noise density works as filter tuning parameters. The filters were found to be sensitive to errors on pressure-sensor offset and the cylinder compression ratio.
Technical Paper

Learning Based Model Predictive Control of Combustion Timing in Multi-Cylinder Partially Premixed Combustion Engine

2019-09-09
2019-24-0016
Partially Premixed Combustion (PPC) has shown to be a promising advanced combustion mode for future engines in terms of efficiency and emission levels. The combustion timing should be suitably phased to realize high efficiency. However, a simple constant model based predictive controller is not sufficient for controlling the combustion during transient operation. This article proposed one learning based model predictive control (LBMPC) approach to achieve controllability and feasibility. A learning model was developed to capture combustion variation. Since PPC engines could have unacceptably high pressure-rise rates at different operation points, triple injection is applied as a solvent, with the use of two pilot fuel injections. The LBMPC controller utilizes the main injection timing to manage the combustion timing. The cylinder pressure is used as the combustion feedback. The method is validated in a multi-cylinder heavy-duty PPC engine for transient control.
X