Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Lifetime Assessment of Cylinder Heads for Efficient Heavy Duty Engines Part II: Component-Level Application of Advanced Models for Thermomechanical Fatigue Life Prediction of Lamellar Graphite Cast Iron GJL250 and Vermicular Graphite Cast Iron GJV450 Cylinder Heads

2017-03-28
2017-01-0346
A complete thermomechanical fatigue (TMF) life prediction methodology is developed for predicting the TMF life of cast iron cylinder heads for efficient heavy duty internal combustion engines. The methodology uses transient temperature fields as thermal loads for the non-linear structural finite-element analysis (FEA). To obtain reliable stress and strain histories in the FEA for cast iron materials, a time and temperature dependent plasticity model which accounts for viscous effects, non-linear kinematic hardening and tension-compression asymmetry is required. For this purpose a unified elasto-viscoplastic Chaboche model coupled with damage is developed and implemented as a user material model (USERMAT) in the general purpose FEA program ANSYS. In addition, the mechanism-based DTMF model for TMF life prediction developed in Part I of the paper is extended to three-dimensional stress states under transient non-proportional loading conditions.
Journal Article

TMF Life Prediction of High Temperature Components Made of Cast Iron HiSiMo: Part II: Multiaxial Implementation and Component Assessment

2014-04-01
2014-01-0905
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their life cycle. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In Part I of the paper, a fracture mechanics model for TMF life prediction was developed based on results of uniaxial tests. In this paper (Part II), the model is formulated for three-dimensional stress states, so that it can be applied in a post-processing step of a finite-element analysis. To obtain reliable stresses and (time dependent plastic) strains in the finite-element calculation, a time and temperature dependent plasticity model is applied which takes non-linear kinematic hardening into account.
Technical Paper

Thermomechanical Fatigue Life Predictions of Cast Aluminum Cylinder Heads Considering Defect Distribution

2023-04-11
2023-01-0594
Semi-Permanent Mold (SPM) cast aluminum alloy cylinder heads are commonly used in gasoline and diesel internal combustion engines. The cast aluminum cylinder heads must withstand severe cyclic mechanical and thermal loads throughout their lifetime. The casting process is inherently prone to introducing casting defects and microstructural heterogeneity. Porosity, which is one of the most dominant volumetric defects in such castings, has a significant detrimental effect on the fatigue life of these components since it acts as a crack initiation site. A reliable analytical model for Thermo-Mechanical Fatigue (TMF) life prediction must take into account the presence of these defects. In previous publications, it has been shown that the mechanism-based TMF damage model (DTMF) is able to predict with good accuracy crack locations and the number of cycles to propagate an initial defect into a critical crack size in aluminum cylinder heads considering ageing effects.
X