Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Investigations of Vehicle Base Drag Reduction Using Passive Jet Boat-Tail Flow Control

2014-09-30
2014-01-2448
This study is focused on the detailed experimental investigation of jet boat-tail (JBT) passive flow control bluff body models to reduce the base pressure drag. The JBT technique is employed through an open inlet at the leading edge of the bluff body along with a circumferential jet at the trailing edge in order to energize the base flow using the high kinetic energy flow from freestream. As a consequence, entrainment of the main flow into base flow region is initiated earlier downstream. A reduction in the turbulent fluctuation of the wake can be observed in addition to a decrease of the recirculation region velocity. Using 2D/3C Particle Image Velocimetry (PIV), two models with different inlet sizes are tested. The large flow rate model is designed with an inlet area 4.7 times greater than the other JBT prototype. The wind tunnel experimental results show a substantial reduction in the wake width and depth for the two models, which indicates a significant drag reduction.
Technical Paper

Truck Rear View Mirror Drag Reduction Using Passive Jet Boat Tail Flow Control

2017-03-28
2017-01-1538
This paper conducts numerical simulation and wind tunnel testing to demonstrate the passive flow control jet boat tail (JBT) drag reduction technique for a heavy duty truck rear view mirror. The JBT passive flow control technique is to introduce a flow jet by opening an inlet in the front of a bluff body, accelerate the jet via a converging duct and eject the jet at an angle toward the center of the base surface. The high speed jet flow entrains the free stream flow to energize the base flow, increase the base pressure, reduces the wake size, and thus reduce the drag. A baseline heavy duty truck rear view mirror is used as reference. The mirror is then redesigned to include the JBT feature without violating any of the variable mirror position geometric constraints and internal control system volume requirement. The wind tunnel testing was conducted at various flow speed and yaw angles.
X