Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Assessment of Numerical Cold Flow Testing of Gas Turbine Combustor through an Integrated Approach Using Rapid Prototyping and Water Tunnel

2019-10-11
2019-28-0051
In the present work, it is aimed at developing an integrated approach for combustor modeling involving rapid prototyping and water tunnel testing to assess the cold flow numerical simulations; the physical model will be subjected to cold flow visualization and parametric studies and CFD analysis to demonstrate its capability for undergoing rigorous cold flow testing. A straight through annular combustors is chosen for the present study because of it has low pressure drop, less weight and used widely in modern day aviation engines. Numerical Analysis has been performed using ANSYS-FLUENT. Three dimensional RANS equations are solved using k-ɛ model for the Reynolds numbers ranging from 0.64 x 105-1.5 x 105 based on the annulus diameter. Post processing the results is done in terms of jet penetration, formation of recirculation zone, effective mixing, flow split and pressure drop for different cases.
Technical Paper

Attenuation of Aeroacoustic Noise of a Typical Van Using Passive Devices through CFD Simulation

2019-10-11
2019-28-0034
The present numerical analysis aims at studying the effect of changes in profile of van on aero-acoustic noise and aerodynamic drag. The numerical analysis is carried out using commercial CFD software, ANSYS Fluent, with k-epsilon & Large Eddy Simulation turbulence models. In present study five models of truck are analysed, including baseline model at different Reynolds numbers, namely 0.391, 0.415 and 0.457 million. In order to reduce the aero-acoustic noise, various profile modifications have been adapted on existing van model by adding a top and bottom diffuser at the rear of the truck. The comparison has been done with respect to coefficient of drag, coefficient of pressure, pressure contours for all four cases.
Technical Paper

Design and Development of an Exhaust Muffler with Improved Transmission Loss for a Naturally Aspirated Diesel Engine

2019-10-11
2019-28-0046
In the last two decades, most of the advances in exhaust systems such as acoustic filters and mufflers had been developed to attenuate noise levels and emissions as per environment norms. The purpose of this research work is to design, analyze and test an exhaust muffler in order to determine the pressure drop and noise reduction in the exhaust system. Computational Fluid Dynamic simulations were performed using ANSYS Fluent 16.2. The muffler diameter and length were chosen where as perforations and baffles were also considered so as to have the maximum pressure drop and noise reduction. This study is aimed at investigating a reactive perforated muffler. Several designs were considered for maximum pressure drop and the best was finally selected for manufacturing. Experimental testing was carried out with the finalized muffler prototype.
Journal Article

Effect of Wall Proximity and Shape on Bubble Enhanced Heat Transfer from a Vertical Heated Surface

2022-12-23
2022-28-0508
Numerical simulation has been performed to study the heat transfer enhancement from the vertical heated wall surfaces with the help of rising bubbles due to the buoyancy force. The effect of wall proximity and bubble shapes are investigated for three wall shapes such as plane wall, wavy wall and triangular wall. Numerical solution is obtained by solving both the thermos-fluid governing equations and the Volume of Fluid (VOF) advection equation along with the Piecewise-Linear Interface Construction (PLIC) algorithm available in ANSYS-Fluent, an FVM based commercial CFD code. The results observed in the three types of wall geometries were showing the heat transfer differently for the 3 mm bubble. For the plane wall from the rise of the bubble to 0.3 seconds the temperature gradient is 10 K whereas for the curved and triangular wavy walls these gradients are 9.6 K and 17.23 K respectively. and after 0.6 seconds, this gradient is almost the same for all the wall shapes.
Technical Paper

Enhancing Aerodynamic Performance of Savonius Vertical Axis Wind Turbine used with Triboelectric Generator

2022-12-23
2022-28-0507
This paper aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged via a design and the improvement in efficiency of a Savonius Vertical Axis Wind Turbine and coupled in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using a CFD Software, and the efficiency of the TENG is evaluated analytically. The Turbine's coefficient of power is validated with the literature for an inlet velocity of 7 m/s with a Tip Speed Ratio (TSR) of 0.75 and found to reasonably agree with that of experimental results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers.
Technical Paper

Improving the Fuel Economy of Truck by Reducing Aerodynamics Drag - 3D CFD Study

2020-09-25
2020-28-0383
The present numerical analysis aims at studying the effect of changes in profile of truck-trailer on aerodynamic drag and its adverse effect on fuel consumption. The numerical analysis is carried out using commercial CFD software, ANSYS Fluent, with k-ω Shear tress transportation (SST) turbulence model. In present study four models of truck were analysed, including baseline model at different Reynolds numbers, namely 0.5, 1, 1.5 and 2 million. In order to enhance fuel consumption, various profile modifications have been adapted on baseline truck-trailer model by adding a spoiler and bottom diffuser at the rear of the truck, by providing vortex generator at the rear top of the truck and by adding boat tail at the end of trailer. The comparison has been done with respect to coefficient of drag, coefficient of pressure, pressure contours, and velocity vectors between all four cases.
X