Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis and Stack-Up Sequence Optimization for Fiber Reinforced Composite Hood

2017-08-25
2017-01-5005
In today’s cost competitive environment, automotive companies are moving towards lightweight materials for reducing carbon footprint, increasing fuel economy and cost benefits. Fiber reinforced plastics (FRP) is one of the most attractive option considering its high strength to weight ratio. The advantage of continuous FRP composites is tailorability according to different performance requirements. This paper will focus on finite element analysis and optimization of automotive hood structure made up of continuous carbon fiber reinforced composite with epoxy resin based matrix. Composite hood structure is analyzed using detailed orthotropic composite laminate models and an appropriate composite material failure theory. Strength of FRPs is maneuvered by orientations of the fiber plies. Considering this, stack-up sequence optimization is performed considering bending, torsional stiffness and fundamental modes in dynamic analysis.
Technical Paper

Design of Light Weight Footstep Using Continuous Glass Fiber Reinforced Plastics

2019-10-11
2019-28-0172
Utility or Off-road vehicles are characterized with their higher ground clearances. Higher ground clearance of vehicle requires the vehicle to have footsteps for easy entry and exit of passengers from the vehicle. A typical foot step construction consists of structural steel brackets with an Aluminum or plastic top panel. Conventional steel construction is heavier to meet weight bearing capacity and durability requirements. Our objective of this work is to explore lightweight materials which can meet these performance requirements with a lighter construction. We chose to study the continuous glass fiber reinforced plastic as an alternative to the metal construction.
Technical Paper

Suspension Strain Correlation Using Flex Bodies in MBD

2014-04-01
2014-01-0763
Automotive Suspension is one of the critical system in load transfer from road to Chassis or BIW. Using flex bodies in Multi body simulations helps to extract dynamic strain variation. This paper highlights how the MBD and FE integration helped for accurate strain prediction on suspension components. Overall method was validated through testing. Good strain correlation was observed in dynamic strains of constant amplitude in different loading conditions. Combination of different direction loading was also tested and correlated. Method developed can be used in the initial phase of the vehicle development program for suspension strength evaluation. Suspension is one of the important system in vehicle which is subjected to very high loading in all the directions. To predict the dynamic stresses coming on the suspension system due to transient loads, faster and accurate method is required. To accelerate the suspension design process it become necessary to get good accuracy in the results.
X