Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

A New De-throttling Concept in a Twin-Charged Gasoline Engine System

2015-04-14
2015-01-1258
Throttling loss of downsized gasoline engines is significantly smaller than that of naturally aspirated counterparts. However, even the extremely downsized gasoline engine can still suffer a relatively large throttling loss when operating under part load conditions. Various de-throttling concepts have been proposed recently, such as using a FGT or VGT turbine on the intake as a de-throttling mechanism or applying valve throttling to control the charge airflow. Although they all can adjust the mass air flow without a throttle in regular use, an extra component or complicated control strategies have to be adopted. This paper will, for the first time, propose a de-throttling concept in a twin-charged gasoline engine with minimum modification of the existing system. The research engine model which this paper is based on is a 60% downsized 2.0L four cylinder gasoline demonstrator engine with both a supercharger and turbocharger on the intake.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

A Study on Dynamic Torque Cancellation in a Range Extender Unit

2016-04-05
2016-01-1231
A range extended electric vehicle (REEV) has the benefit of zero pipeline emission for most of the daily commute driving using the full electric mode while maintaining the capability for a long-range trip without the requirement of stop-and-charge. This capability is provided by the on-board auxiliary power unit (APU) which is used to maintain the battery state of charge at a minimum limit. Due to the limited APU package size, a small capacity engine with low-cylindercount is normally used which inherently exposes more severe torque pulsation, that arises from a low firing frequency. By using vector control, it is feasible to vary the generator in-cycle torque to counteract the engine torque oscillation dynamically. This allows for a smoother operation of the APU with the possibility of reducing the size of the engine flywheel. In this paper, a series of motor/generator control torque patterns were applied with the aim of cancelling the engine in-cycle torque pulses.
Technical Paper

Advanced Mapping Techniques for Radial Compressor for Use in Real-Time Engine Models

2010-04-12
2010-01-1227
This paper focuses on the modelling of compressor data for use in real-time engine models where speed of execution is critical. The objective of this investigation was to develop a new technique for interpolation and extrapolation of manufacturer data to create extended, denser maps. Dynamic simulation and emulation methods are increasingly being employed due to the escalating difficultly in matching a turbocharger configuration to an engine, with today's ultra-low levels of regulated emissions. The turbocharger sub-model is a vital part of the of the complete engine model, therefore it is important that it is reliable and accurate. Turbocharger maps are typically presented in graphical form and do not cover the entire operating range of the engine, leading to difficulties for inclusion in simulation. Out of the techniques studied, a combination of spline and parametric fitting modelled the data most successfully.
Technical Paper

Dynamic Measurement of Heat Flux through the Cylinder Wall of a Modern HSDI Engine Over a New European Drive Cycle

2010-04-12
2010-01-0322
A modern high speed four cylinder Diesel engine equipped with high pressure common rail fuel injection equipment has been fitted with extensive instrumentation to allow the heat flux and coolant convective heat transfer coefficient through the cylinder walls to be estimated. The instrumentation was located around the circumference of the cylinder and longitudinally down the cylinder. The engine has been run through the new European drive cycle using a dynamic test stand. From the experimental results it was found that there was a strong correlation between the one dimensional heat flux through the cylinder wall and the engine speed. The changes in heat flux were found to be repeatable over the four repeated ECE sections of the drive cycle. It was also found that the magnitude of heat flux reduced down the length of the cylinder.
Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for Steady-State Part Load Performance and Transient Rise Times

2023-04-11
2023-01-0294
In passenger car development, extreme ICE downsizing trends have been observed over the past decade. While this comes with fuel economy benefits, they are often obtained at the expense of Brake Mean Effective Pressure (BMEP) rise time in transient engine response. Through advanced control strategies, the use of Fully Variable Valvetrain (FVVT) technologies has the potential to completely mitigate the associated drivability-penalizing constraints. Adopting a statistical approach, key part load performance engine parameters are analyzed. Design-of-Experiment data is generated using a validated GT-Power model for a Freevalve-converted turbocharged Ultraboost engine. Subsequently, MathWorks' Model Based Calibration (MBC) toolbox is utilized to interpret the data through model fitments using neural network models of optimized architectures.
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Technical Paper

Modelling the Performance of the Torotrak V-Charge Variable Drive Supercharger System on a 1.0L GTDI - Preliminary Simulation Results

2015-09-01
2015-01-1971
A supercharger system which boosts the engine via a direct drive from the engine crankshaft has been identified as a possible solution to improve low-end torque and transient response for a conventional turbocharged SI engine. However, the engine equipped with a fixed-ratio supercharger is not as fuel-efficient especially at high load and low speed due to the fact that a large portion of the intake mass air flow has to recirculate through a bypass valve causing inevitable mechanical and flow losses. In addition, the fixed drive ratio of the supercharger which is mainly determined by the full-load requirements might not be able to provide sufficient over-boost during a transient. The fact that a clutch may be necessary for high engine speed operation on the fixed-ratio supercharger system is another issue from the perspective of cost and NVH performance.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
Technical Paper

Simulation Study of the Series Sequential Turbocharging for Engine Downsizing and Fuel Efficiency

2013-04-08
2013-01-0935
The series sequential turbocharging technology is recently gaining attention as the new round of engine downsizing and emission control becomes imperative for the engine manufacturers. The technology is able to provide combined benefits of transient performance, engine downsizing, fuel efficiency and emissions reduction with foreseeable problems of control, packaging and cost. The matching and characterization of the two interactive turbochargers is a challenging exercise. Two important questions are, how should the two machines be sized and what is the best strategy for the turbochargers across the speed range of the engine at full load. This paper addresses these two questions by comparing a variety of matching sizes and presenting an attempt to identify an optimal valve operating schedule in order to achieve the target limiting torque curve.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
X