Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Methods for Quantifying the Impact Severity of Low-Speed Side Impacts at Varying Angles

2020-04-14
2020-01-0641
Accurately quantifying the severity of minor vehicle-to-vehicle impacts has commonly been achieved by utilizing the Momentum Energy Restitution (MER) method. A review of the scientific literature revealed investigations assessing the efficacy of the MER method primarily for: 1) inline rear-end impacts, 2) offset rear-end impacts, and 3) side impacts configured with the bullet vehicle striking the target vehicle at an approximate 90° angle. To date, the utility of the MER method has not been thoroughly examined and readily published for quantifying oblique side impacts. The aim of the current study was to analyze the effectiveness of the MER method for predicting the severity of side impacts at varying angles. Data were collected over a series of 12 tests with bullet-to-target-vehicle contact angles ranging from approximately 45° to 315° with corresponding impact speeds of approximately 12.5 km/h (7.8 mph) to 16.1 km/h (10.0 mph).
Technical Paper

Validation of Utilizing a Self-Propelled Crash Sled to Simulate Occupant Accelerations in Minor Rear-End Impacts

2022-03-29
2022-01-0857
A novel, electrically self-propelled, mobile, free-standing crash sled was constructed with a relatively minimal budget (i.e., ≤ $10,000). The crash sled was designed to simulate occupant driver or passenger seat movement in minor impacts at varying angles with minimal, if any, component replacement necessary between tests. Validation of the crash sled in a rear-end only configuration for determination of occupant accelerations was performed. Minor rear-end crash tests involving human occupants were conducted utilizing a 2007 Toyota Camry target vehicle and a 2005 Toyota Camry bullet vehicle with changes in velocity for the target vehicle ranging between 2.8 km/h and 7.7 km/h. Vehicle instrumentation consisted of tri-axial accelerometers affixed to the center tunnels near their respective center of gravities. Human occupant instrumentation occurred only in the target vehicle and involved tri-axial accelerometers at the head, thorax, and lumbar spine.
X