Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Comprehensive Assessment on Combined Effect of Thermal Barrier Coating and Emulsification Techniques on Engine Behavior of a Mahua Oil Based Diesel Engine

2017-03-28
2017-01-0873
This paper presents a comprehensive study on using MO (Mahua oil) as fuel effectively in a diesel engine by adopting emulsification and TBC (Thermal Barrier Coating) techniques. A mono cylinder diesel engine was used for the study. Initially trials were made on the engine using neat diesel (ND), Neat Mahua oil (NMO) as fuels. In the second phase, NMO was converted into its stable emulsion (called as MOE) and tested in the engine. Finally thermal barrier coating of 0.2 mm was made on the piston, valves and cylinder head of the engine using the ceramic power of Al2O3 and the engine was tested using NMO and MOE as fuels in the TBC engine. Results indicated improvement in BTE (brake thermal efficiency) with MOE as compared to NMO mainly at high power outputs in the unmodified engine. The maximum BTE was found as 31.5% with ND, 27.2% with NMO and 30.4% with MOE at the peak power output.
Technical Paper

Comparative Study on Utilization of Waste Cooking Oil in Compression Ignition Engine with Fuel and Engine Modification Techniques

2022-12-23
2022-28-0568
The energy strategy of a country aims at efficiency, and security, providing access that is environmentally friendly and achieving an optimum mix of primary resources for energy generation. The energy produced from the waste could be an area of useful research work. In this research work, the Neat form of waste cooking oil (NWCO) fuel was effectively used in a compression ignition (C.I) engine. A single-cylinder, water-cooled, agricultural type, direct injection CI engine developing a power output of 3.54 kW at 1500 rpm was used throughout the research work. Fuel and Engine Level modification was used in this work. Copper Oxide (CuO) nanomaterial blended with the emulsified form of WCO. In that dual fuel mode, Ethanol was injected into the intake manifold as primary fuel and WCO as pilot fuel. The Ethanol energy share varies from 0 – 40 %.
Technical Paper

Development of Dual Fuel Engine Fueled with Used Cooking Oil Biodiesel and Ethanol-an Experimental Study on Performance and Combustion Characteristics

2020-04-14
2020-01-0803
This paper investigates the performance and combustion characteristics of a compression ignition engine (CI engine) fueled with Used Cooking Oil Biodiesel (UCOB) and ethanol in dual fuel mode. In this study, UCOB was injected as the main fuel through a conventional mechanical fuel injection system. Various mass flow rates of ethanol were inducted as primary fuel through the engine intake manifold using a separate fuel injection system. Mass flow rates of ethanol were metered by an electronic control circuit. The engine test was conducted under different load conditions from no load to full load in a fully instrumented direct injection, water-cooled compression ignition engine. The results indicated that the dual fuel engine produced higher brake thermal efficiency, cylinder pressure, heat release rate with lower specific fuel consumption at a higher load condition. However, it was found that combustion characteristics improved marginally at the lower load conditions.
Technical Paper

Dimensional Optimization of Key Parameters Using DoE Technique to Achieve Better NOX Emission Values in Mass Production of Single Cylinder Small Diesel Engines for 3 Wheeler Applications

2020-04-14
2020-01-1356
Oxides of Nitrogen (NOx) emissions are considered as among the most harmful emissions globally having a direct influence on human beings and the environment. This work deals with a strategy to arrive at achieving lower NOx values consistently in mass production of single cylinder automotive diesel engines meeting BS IV Emission standards using the DoE technique for dimensional optimization of critical parameters. Catalytic converters and particulate filters are mostly used as after - treatment devices for compression Ignition (CI) engines for bringing down the limits (Values) of the pollutants from the tail pipes. But the real ingenuity lies in achieving the same effect through optimization of in - cylinder combustion.
Technical Paper

Effects on Performance, Emission and Combustion Characteristics of Dual Fuel Mode CI Engine Operated with Waste Cooking Oil - Ethanol as Fuel

2020-09-25
2020-28-0433
Waste cooking oils (WCOs) are renewable and in nature can be directly used as fuel into the compression ignition engines. However, the reduction in brake thermal efficiency and increasing smoke emission and oxides of nitrogen need to be solved. There are more techniques used past researchers to improves the performance and reduced the emissions characteristics of WCO. In this present work, an experimental investigation made on the effect of ethanol on engine's behavior using Waste Cooking oil (WCO) based dual fuel diesel engine. A single-cylinder diesel engine was operated and modified the intake to operate dual fuel mode at the maximum power output of 3.54 kW. Ethanol is introduced as primary fuel into the intake manifold and WCO as pilot fuel. The ethanol energy share (EES) of the total fuel was varied from 5% to 40% with a step of 5%, at fixed engine speed equal to 1500 rpm.
Technical Paper

Experimental Study on Combined Effect of Yttria Stabilized Zirconia Coated Combustion Chamber Components and Emulsification Approach on the Behaviour of a Compression Ignition Engine Fuelled with Waste Cooking Oil Methyl Esters

2019-10-11
2019-28-0164
Waste Cooking Oil (WCO) is generated in large quantity worldwide due to the increase in population and change of food habits. This work is about utilizing this WCO as an alternative fuel for Compression Ignition (CI) engine, in view of addressing the constraints in the domain of land as well as air pollution. A fuel and engine level modification were carried out to analyse the behaviour of the test engine. In the first phase of the study, collected WCO was converted into its methyl esters (i.e. WCOME) and tested for its properties. A single cylinder, water cooled, direct injection, compression ignition engine was developed with suitable emission and combustion parameters computing equipments in the second phase of the work. In the third phase of the work, the developed engine was tested with neat diesel, WCO and WCOME under different engine power outputs. WCOME was converted into its emulsion (WCOMEE) and tested in the developed engine in the fourth phase of the work.
Technical Paper

Experimental Study on Influence of Iron Oxide Nanofluids on Characteristics of a Low Heat Rejection Diesel Engine Operated with Methyl Esters of Waste Cooking Oil

2020-09-25
2020-28-0412
In this study, an experimental investigation was carried out to evaluate the effect of Iron Oxide Nanofluids on the performance, emission and combustion characteristics of Low Heat Rejection (LHR) diesel engine operated with methyl esters of Waste Cooking Oil (WCOME). In the first phase of the work, single-cylinder, direct injection diesel engine test rig was developed and tested for its baseline readings with diesel at different power outputs. In the second phase of the work, the test engine was operated with WCOME and tested for its characteristics.
Technical Paper

Thermal Analysis and Experimental Investigations on the Effect of Thermal Barrier Coating on the Behavior of a Compression Ignition Engine Operated with Methyl Esters of Waste Cooking Oil

2018-04-03
2018-01-0663
One of the globally challenging issues today is Waste Utilization. The excessive accumulation of waste has created an uncomfortable pressure on not, just the habitant but on the environment as well. As a small step forward in contributing towards minimizing waste disposal, this study attempts to address the problem raised due to the disposal of waste cooking oil. Researchers found that Waste Cooking Oil (WCO) has a very good potential as a fuel for compression ignition engine and was therefore selected for this study. In the first phase of the work, behaviour of the test engine was studied with neat WCO at different power outputs. As the first modification, neat WCO was converted in to its methyl ester and tested in the same engine. Next, combustion chamber parts like piston and cylinder head, inlet and exhaust valves were coated with Thermal Barrier Coating (TBC) and engine behaviour was studied.
X