Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Comparative Study on Different Methods of Using Waste Cooking Oil as Fuel in a Compression Ignition Engine

2017-03-28
2017-01-0876
Different methods to improve the performance of a WCO (waste cooking oil of sunflower) based mono cylinder compression ignition (CI) engine were investigated. Initially WCO was converted into its emulsion by emulsification process and tested as fuel. In the second phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. In the third phase, the engine was modified to work in the dual fuel mode with hydrogen being used as the inducted fuel and either WCO or WCO emulsion used as the pilot fuel. All the tests were carried out at 100% and 40% of the maximum load (3.7 kW power output) at the rated speed of 1500 rpm. Engine data with neat diesel and neat WCO were used for comparison. WCO emulsion indicated considerable improvement in performance. The smoke and NOx values were noted to be less than neat WCO.
Technical Paper

A Comprehensive Assessment on Combined Effect of Thermal Barrier Coating and Emulsification Techniques on Engine Behavior of a Mahua Oil Based Diesel Engine

2017-03-28
2017-01-0873
This paper presents a comprehensive study on using MO (Mahua oil) as fuel effectively in a diesel engine by adopting emulsification and TBC (Thermal Barrier Coating) techniques. A mono cylinder diesel engine was used for the study. Initially trials were made on the engine using neat diesel (ND), Neat Mahua oil (NMO) as fuels. In the second phase, NMO was converted into its stable emulsion (called as MOE) and tested in the engine. Finally thermal barrier coating of 0.2 mm was made on the piston, valves and cylinder head of the engine using the ceramic power of Al2O3 and the engine was tested using NMO and MOE as fuels in the TBC engine. Results indicated improvement in BTE (brake thermal efficiency) with MOE as compared to NMO mainly at high power outputs in the unmodified engine. The maximum BTE was found as 31.5% with ND, 27.2% with NMO and 30.4% with MOE at the peak power output.
Technical Paper

Comparative Study on Smoke Emission Control Strategies of a Variable Compression Ratio Engine Fueled with Waste Cooking Oil

2018-04-03
2018-01-0908
This work involves a with comparative study of smoke emission reduction methods of a compression ignition engine fueled with neat Waste Cooking Oil (WCO). The test engine chosen for this study is an agricultural based single cylinder, with a variable compression ratio, which is water cooled and is of the direct injection compression ignition engine type. Initially the test engine was tested using with neat diesel and WCO using various load conditions with three different compression ratios, i.e., 16.5, 17.5 and 18 for its performance, emission and combustion behaviours respectively. Results revealed that, both diesel and neat WCO experienced higher Brake Thermal Efficiency (BTE) with increased compression ratio. Except for smoke emission, all other carbon based emissions of neat WCO was found to reduce with increased compression ratio.
Technical Paper

Dimensional Optimization of Key Parameters Using DoE Technique to Achieve Better NOX Emission Values in Mass Production of Single Cylinder Small Diesel Engines for 3 Wheeler Applications

2020-04-14
2020-01-1356
Oxides of Nitrogen (NOx) emissions are considered as among the most harmful emissions globally having a direct influence on human beings and the environment. This work deals with a strategy to arrive at achieving lower NOx values consistently in mass production of single cylinder automotive diesel engines meeting BS IV Emission standards using the DoE technique for dimensional optimization of critical parameters. Catalytic converters and particulate filters are mostly used as after - treatment devices for compression Ignition (CI) engines for bringing down the limits (Values) of the pollutants from the tail pipes. But the real ingenuity lies in achieving the same effect through optimization of in - cylinder combustion.
Technical Paper

Effective Utilization of Low Carbon Fuels in Agricultural Engines Using Low Cost Electronic Primary Fuel Injection Unit

2020-04-14
2020-01-1369
Reliability and cost effectiveness of electronics demands its usage in all the wings of science and technology. Thus an attempt was made in this work to investigate the potential of using electronics for injecting primary fuel for the compression ignition engine used by farmers for agricultural purpose. In the first phase of the work, a new Electronic Control Unit (ECU) for primary fuel injection was developed and tested for its repeatability on fuel injection quantity for the different input voltages. Test engine was developed and tested under various load condition for its performance, emission, and combustion characteristics with neat diesel and Waste Cooking Oil Methyl Esters (WCOME) as baseline readings in the second phase of the work. In the third phase of work, the developed engine was modified to operate in duel fuel mode with developed ECU. In this work, ethanol was chosen as primary fuel due to its availability and less toxic nature as compared to other green fuels.
Technical Paper

Effects on Performance, Emission and Combustion Characteristics of Dual Fuel Mode CI Engine Operated with Waste Cooking Oil - Ethanol as Fuel

2020-09-25
2020-28-0433
Waste cooking oils (WCOs) are renewable and in nature can be directly used as fuel into the compression ignition engines. However, the reduction in brake thermal efficiency and increasing smoke emission and oxides of nitrogen need to be solved. There are more techniques used past researchers to improves the performance and reduced the emissions characteristics of WCO. In this present work, an experimental investigation made on the effect of ethanol on engine's behavior using Waste Cooking oil (WCO) based dual fuel diesel engine. A single-cylinder diesel engine was operated and modified the intake to operate dual fuel mode at the maximum power output of 3.54 kW. Ethanol is introduced as primary fuel into the intake manifold and WCO as pilot fuel. The ethanol energy share (EES) of the total fuel was varied from 5% to 40% with a step of 5%, at fixed engine speed equal to 1500 rpm.
Technical Paper

Experimental Study on Combined Effect of Yttria Stabilized Zirconia Coated Combustion Chamber Components and Emulsification Approach on the Behaviour of a Compression Ignition Engine Fuelled with Waste Cooking Oil Methyl Esters

2019-10-11
2019-28-0164
Waste Cooking Oil (WCO) is generated in large quantity worldwide due to the increase in population and change of food habits. This work is about utilizing this WCO as an alternative fuel for Compression Ignition (CI) engine, in view of addressing the constraints in the domain of land as well as air pollution. A fuel and engine level modification were carried out to analyse the behaviour of the test engine. In the first phase of the study, collected WCO was converted into its methyl esters (i.e. WCOME) and tested for its properties. A single cylinder, water cooled, direct injection, compression ignition engine was developed with suitable emission and combustion parameters computing equipments in the second phase of the work. In the third phase of the work, the developed engine was tested with neat diesel, WCO and WCOME under different engine power outputs. WCOME was converted into its emulsion (WCOMEE) and tested in the developed engine in the fourth phase of the work.
Technical Paper

Experimental Study on Influence of Iron Oxide Nanofluids on Characteristics of a Low Heat Rejection Diesel Engine Operated with Methyl Esters of Waste Cooking Oil

2020-09-25
2020-28-0412
In this study, an experimental investigation was carried out to evaluate the effect of Iron Oxide Nanofluids on the performance, emission and combustion characteristics of Low Heat Rejection (LHR) diesel engine operated with methyl esters of Waste Cooking Oil (WCOME). In the first phase of the work, single-cylinder, direct injection diesel engine test rig was developed and tested for its baseline readings with diesel at different power outputs. In the second phase of the work, the test engine was operated with WCOME and tested for its characteristics.
Technical Paper

Investigation on Electronic Assisted Primary Fuel Injection of Compression Ignition Engine Fueled with Waste Cooking Oil as Pilot Fuel for Improved Part Load Efficiency and Effective Waste Utilization

2017-03-28
2017-01-0768
Waste utilization is found to be a challenging task all around the globe. Converting the waste into useful forms of energy is a significant landmark in meeting the demand of world energy requirement. Thus an attempt was made in this study to make use of Waste Cooking Oil (WCO) as a fuel to operate compression ignition engine effectively as it degrades both the environment and human health.WCO was collected form the hostel mess of the author institution. In the first phase of the study, a single cylinder water cooled diesel engine was developed and operated in a single fuel mode with neat diesel and WCO as fuel under various load condition. Engine was modified in the second phase of the work to operate in dual fuel mode with a low reactive fuel like ethanol as primary fuel. In this work ethanol was injected in the intake manifold using newly developed Electronic Primary Fuel Injection System (EPFIS).
Technical Paper

Investigations on the Levitation Process of Boat Vehicle attached with Air Vessels – A Revolutionary Discussion in Waterway Transportation

2022-10-05
2022-28-0316
Nowadays, the technology war always shows the need for rushing hours in the transportation sector. Turbines and IC engines, which generate power, can only be operated with the help of high-pressure air. In this research, an analytical study introduces an innovative boat vehicle driven by air-water interactions. The principles of an OWC (Oscillating Water Column) wave energy converter device is reviewed to find the effects of air-water interactions that are the key concepts for introducing the partially levitated transportation method. The physical conditions around the boat vehicle, such as squat conditions and speed variations, are reviewed under different stream conditions to explore the possibilities of converting the potential energy of water into kinetic energy under dynamic conditions. An experimental Froude - model analysis is presented to find the velocity and kinetic energy at upstream and downstream conditions of the channel.
X