Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Braking System Components Modelling

2003-10-19
2003-01-3335
The paper deals with a method implemented to study braking systems design, modelling components' characteristics through commercial software. It summarizes the potential improvement possible by using modelling techniques in chassis systems design. The first part consisted in producing a passive braking system model. A first validation was carried out on a test bench by using components of different braking systems. Particular attention was devoted to booster modelization both in semi-stationary and dynamic conditions. The second part was callipers, roll-back and thermal phenomena modelization. Finally, it were modelled Anti-lock Braking System (ABS) and Vehicle Dynamics Control (VDC) Hydraulic Units and their integration with control strategies and with vehicle dynamics model.
Journal Article

E-Mobility-Opportunities and Challenges of Integrated Corner Solutions

2021-04-06
2021-01-0984
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Current e-vehicle platforms still present architectural similarities with respect to combustion engine vehicle (e.g., centralized motor). Target of the European project EVC1000 is to introduce corner solutions with in-wheel motors supported by electrified chassis components (brake-by-wire, active suspension) and advanced control strategies for full potential exploitation. Especially, it is expected that this solution will provide more architectural freedom toward “design-for-purpose” vehicles built for dedicated usage models, further providing higher performances.
Technical Paper

Electro-Hydraulic Braking System Modelling and Simulation

2003-10-19
2003-01-3336
The first step toward a braking system ‘by wire’ is Electro-Hydraulic Braking System (EHB). The paper describes a method to evaluate through virtual experimentation the actual improvement in vehicle behaviour, from the point of view of both handling and comfort, including also pedal feeling, due to EHB. The first step consisted in modelling the hydraulic unit, comprehensive of sensors. Then it was conceived a control logic devoted to medium-low intensity braking manoeuvres, without ABS intervention, to determine an optimal braking force distribution and pedal feeling depending on the manoeuvre. A failsafe strategy, complete of on board diagnosis, to prevent dangerous system behaviour in the eventuality of a component failure was carried out and tested. Finally, EHB wheel pressure sensors were used to improve both ABS performance, increasing the adherence estimation, and Vehicle Dynamics Control (VDC) performance, through a more precise actuation.
Technical Paper

Electro-Mechanical Active Roll Control: A New Solution for Active Suspensions

2006-02-14
2006-01-1966
The paper presents the approach followed by Politecnico di Torino Vehicle Dynamics Research team to design an electro-mechanical Active Roll Control (ARC) system. The first part of the paper describes the targets of the system, which has to improve both comfort and handling. Different solutions for the implementation of the electro-mechanical actuation were evaluated. A prototype of the electro-mechanical Active Roll Control was built and experimentally tested in the Vehicle Dynamics Laboratory of the Department of Mechanics of Politecnico di Torino, by adopting a Hardware-In-the-Loop (HIL) test bench. The experimental results show the benefits of the system, both in a stand alone configuration and integrated with an Electronic Stability Control (ESC) system.
Technical Paper

Hardware in the Loop for Braking Systems with Anti-lock Braking System and Electronic Stability Program

2004-05-04
2004-01-2062
The paper describes Politecnico di Torino braking systems test bench, based on hardware in the loop (HIL). The test bench, consisting of the whole braking system hardware, can be used for: Analysis of passive braking systems, to determine the main characteristics both in semi-stationary and dynamic conditions; Analysis of passive braking systems, to investigate the influence of eventual asymmetries on vehicle behaviour, since a vehicle model runs in real time and receives wheels pressure values by the sensors on the physical device; Analysis of Commercial Anti-lock Braking/Electronic Stability Program (ESP) Systems, both from the point of view of control strategies and hydraulic units performance; Definition of new ABS/ESP control strategies, e.g. considering wheels caliper pressure signals as inputs, using pre-existing commercial hydraulic units.
Technical Paper

Hardware-In-the-Loop (HIL) Testing of ESP (Electronic Stability Program) Commercial Hydraulic Units and Implementation of New Control Strategies

2004-10-10
2004-01-2770
Firstly, the paper presents Politecnico di Torino Hardware-in-the-Loop (HIL) brake systems test bench. Secondly, it describes in detail all the necessary basic tests to characterize, on the bench, an ESP hydraulic unit: for example, step response of each valve, measurement of pressure limiter valves calibration, step response of motor pump unit. The experimental results are reported. Thirdly, the paper deals with the frequency response of ESP valves, by using Pulse Width Modulation. Pressure gradients and pressure oscillations obtained in the tests are commented in detail. An open loop actuation strategy for ESP is presented, permitting to obtain, in each condition, the desired wheels pressure levels, without having any output pressure sensor in the hydraulic unit. This strategy was conceived by simulation and then successfully tested on the bench. An ESP control strategy, complete of a diagnostic algorithm, was added to the actuation logic described before and tested on the bench.
Technical Paper

Hardware-In-the-Loop to Evaluate Active Braking Systems Performance

2005-04-11
2005-01-1580
The paper shortly describes an ABS/ESP Hardware-In-the-Loop (HIL) test bench built by the Vehicle Dynamics Team of the Department of Mechanics of Politecnico di Torino. It consists of a whole brake system, integrated through specific interface (e.g. wheel pressures signals) with a vehicle model running in real time on a dSPACE® board. Different commercial ABS strategies are compared, in a large spectrum of manoeuvres: slow brake apply manoeuvres, panic brake manoeuvres, μ-split brake manoeuvres, brake manoeuvres with a sudden variation of the friction coefficient between tyres and ground. The paper deals with the generation of all the signals required for activating a commercial ESP: steering wheel angle, body yaw rate, body lateral acceleration, engine control, etc… Some of them are transmitted by CAN. Typical handling manoeuvres are used to test the ESP: step steer, double step steer, ramp steer, etc… Several brake manoeuvres are simulated while turning.
Journal Article

Optimal Wheel Torque Distribution for a Four-Wheel-Drive Fully Electric Vehicle

2013-04-08
2013-01-0673
Vehicle handling in steady-state and transient conditions can be significantly enhanced with the continuous modulation of the driving and braking torques of each wheel via dedicated torque-vectoring controllers. For fully electric vehicles with multiple electric motor drives, the enhancements can be achieved through a control allocation algorithm for the determination of the wheel torque distribution. This article analyzes alternative cost functions developed for the allocation of the wheel torques for a four-wheel-driven fully electric vehicle with individually controlled motors. Results in terms of wheel torque and tire slip distributions among the four wheels, and of input power to the electric drivetrains as functions of lateral acceleration are presented and discussed in detail. The cost functions based on minimizing tire slip allow better control performance than the functions based on energy efficiency for the case-study vehicle.
Journal Article

Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors

2017-03-28
2017-01-1597
Electric vehicles with multiple motors permit continuous direct yaw moment control, also called torque-vectoring. This allows to significantly enhance the cornering response, e.g., by extending the linear region of the vehicle understeer characteristic, and by increasing the maximum achievable lateral acceleration. These benefits are well documented for human-driven cars, yet limited information is available for autonomous/driverless vehicles. In particular, over the last few years, steering controllers for automated driving at the cornering limit have considerably advanced, but it is unclear how these controllers should be integrated alongside a torque-vectoring system. This contribution discusses the integration of torque-vectoring control and automated driving, including the design and implementation of the torque-vectoring controller of an autonomous electric vehicle for a novel racing competition. The paper presents the main vehicle characteristics and control architecture.
X