Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Investigation of Thermal Effects on the Hybrid III Thorax Utilizing Finite Element Method

2001-03-05
2001-01-0767
The advent of the Hybrid III crash test dummy marked the beginning of biofidelic anthropomorphic test devices. During the development of its critical components, notably the head, neck, knee, and thorax, biomechanical cadaver test results were incorporated into the design. The result was a dummy that represented the 50th percentile male during idealized impacts. In order to achieve a more biofidelic response from the components, many exotic materials and unique designs were utilized. The thorax, for instance, incorporates a spring steel rib design laminated with a viscoelastic polymeric composite material to damp the response. This combination results in the proper hysteretic losses necessary to model the human thorax under impact loading conditions. The disadvantage of this design is that the damping material properties are highly sensitive to temperature. A variation of more than 5 degrees Fahrenheit dramatically affects the response of the thorax.
Technical Paper

Response of the 6-Month-Old CRABI in Forward Facing and Rear Facing Child Restraints to a Simulated Real World Impact

2002-03-04
2002-01-0026
It is commonly recommended to use infant/child restraints in the rear seat, and that until an infant reaches certain age, weight and height criteria, the infant restraint should be placed rear facing. This paper will describe the injuries suffered by an infant that was restrained in a forward-facing child seat placed in the front passenger seating position during a real world collision. Based on this collision, a full-scale vehicle to barrier impact test was performed. For this test, two 6-month-old CRABI dummies were used in identical child restraints. One of the restraints was placed in the front passenger seat in a forward facing configuration, and the other was placed in the right rear seating position in a rear-facing configuration. This paper provides a detailed discussion of the results of this test, including comparisons of the specific kinematics for both the restraint/child dummy configurations.
X