Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Correlation of Simulated and Measured Noise Emission Using a Combined 1D/3D Computational Technique

1997-02-24
970801
A combined one-dimensional, multi-dimensional computational fluid dynamic modelling technique has been developed for analysis of unsteady gas dynamic flow through automotive mufflers. The technique facilitates assessment of complex designs in terms of back-pressure and noise attenuation. The methodology has been validated on a number of common exhaust muffler arrangements over a wide range of test conditions. Comparison between measured and simulated data has been conducted on a Single-Pulse (SP) rig for detailed unsteady gas dynamic analysis and a Rotary-Valve (RV) rig in conjunction with an anechoic chamber for noise attenuation analysis. Results obtained on both experimental arrangements exhibit excellent gas dynamic and acoustic correlation. The technique should allow optimisation of a wide variety of potential muffler designs prior to prototype manufacture.
Technical Paper

Correlation of Simulated and Measured Noise Emissions and Unsteady Gas Dynamic Flow from Engine Ducting

1996-08-01
961806
One-dimensional (1-D) unsteady gas dynamic models of a number of common muffler (or silencer) elements have been incorporated into a1-D simulation code to predict the impact of the muffler on the gas dynamics within the overall system and the radiated Sound Pressure Level (SPL) noise spectrum in free-space. Correlation with measured data has been achieved using a Single-Pulse rig for detailed unsteady gas dynamic analysis and a Rotary-Valve rig in conjunction with an anechoic chamber for noise spectra analysis. The results obtained show good agreement both gas dynamically and acoustically. The incorporation of these models into a full 1-D engine simulation code should facilitate the rapid assessment of various muffler designs prior to prototype manufacture and testing.
X