Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Simplified Model for the Spatial Distribution of Temperature in a Motored DI Diesel Engine

2001-03-05
2001-01-1235
The purpose of this paper is to present an alternative method to predict the temperature and flow field in a motored internal combustion engine with bowl in piston. For the fluid flow it is used a phenomenological model which is coupled to a computational fluid dynamic method to solve the energy conservation equation and therefore the temperature field. The proposed method has the advantage of simplicity and low computational time. The computational procedure solves the energy conservation equation by a finite volume method, using a simplified air motion model (estimating axial and radial velocities) to calculate the flow field. The finite volume discretization employs the implicit temporal and hybrid central upwind spatial differencing. The grid used contracts and expands following the piston motion, and the number of nodes in the direction of piston motion vary depending on the crank angle.
Technical Paper

Using a Phenomenological Multi-Zone Model to Investigate the Effect of Injection Rate Shaping on Performance and Pollutants of a DI Heavy Duty Diesel Engine

2002-03-04
2002-01-0074
The direct injection heavy-duty diesel engine is the main propulsion unit for trucks, lories and other heavy-duty vehicles mainly due to its superior efficiency when compared to other existing reciprocating engines. However, this engine suffers from relatively high particulate and nitric oxide emission levels. Considering current legislation for emissions and especially future limits, it seems that a great deal of research is required to satisfy these limits and maintain efficiency at a high level. As widely recognized, the fuel injection mechanism plays an important role for both engine performance and pollutant emissions. The major problem is to seek solutions that enable the control of major pollutants, nitric oxide and particulate matter. For this reason, various injection rate shapes have been proposed which require sophisticated fuel injection equipment and extremely high fuel injection pressures. Now two main categories are considered, common rail fuel injection system and PLN.
Technical Paper

Validation of a Newly Developed Quasi-Dimensional Combustion Model - Application on a Heavy Duty DI Diesel Engine

2004-03-08
2004-01-0923
This work is a part of an extended investigation conducted by the authors to validate and improve a newly developed quasi-dimensional combustion model. The model has been initially applied on an old technology, naturally aspirated HSDI Diesel engine and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. But since obviously further and more extended validation is required, in the present study the model is applied on a new technology, heavy-duty turbocharged DI Diesel engine equipped with a high pressure PLN fuel injection system. The main feature of the model is that it describes the air-fuel mixing mechanism in a more fundamental way compared to existing multi-zone phenomenological combustion models, while being less time consuming and complicated compared to the more accurate CFD models. The finite volume method is used to solve the conservation equations of mass, energy and species concentration.
X