Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Skeletal Chemical Kinetic Model for the HCCI Combustion Process

2002-03-04
2002-01-0423
In Homogeneous Charge Compression Ignition (HCCI) engines, fuel oxidation chemistry determines the auto-ignition timing, the heat release, the reaction intermediates, and the ultimate products of combustion. Therefore a model that correctly simulates fuel oxidation at these conditions would be a useful design tool. Detailed models of hydrocarbon fuel oxidation, consisting of hundreds of chemical species and thousands of reactions, when coupled with engine transport process models, require tremendous computational resources. A way to lessen the burden is to use a “skeletal” reaction model, containing only tens of species and reactions. This paper reports an initial effort to extend our skeletal chemical kinetic model of pre-ignition through the entire HCCI combustion process. The model was developed from our existing preignition model, which has 29 reactions and 20 active species, to yield a new model with 69 reactions and 45 active species.
Technical Paper

Autoignition Chemistry Studies on Primary Reference Fuels in a Motored Engine

1994-10-01
942062
Autoignition chemistry of n-heptane, iso-octane and an 87 octane blend, 87 PRF, was studied in a single-cylinder modified Wisconsin model AENL engine under motored conditions. Use of a fast-acting sampling valve and gas chromatographic analysis allowed measurement of in-cylinder gas composition during the ignition process. Crank angle resolved species evolution profiles were generated for all three fuels at a fixed inlet temperature of 376 K. For n-heptane, the measurements were made during a cyclically repeatable two stage ignition process up to the point of hot ignition (the second stage ignition). These n-heptane experiments were run at ø = 0.3 to avoid excessive pressure rise at hot ignition which might damage our engine. iso-Octane and 87 PRF were run at stoichiometric equivalence ratio which did not have a second stage ignition, and species were measured only during the first stage of ignition.
Technical Paper

Prediction of Pre-ignition Reactivity and Ignition Delay for HCCI Using a Reduced Chemical Kinetic Model

2001-03-05
2001-01-1025
Homogeneous Charge Compression Ignition (HCCI) engines have the possibility of low NOx and particulate emissions and high fuel efficiencies. In HCCI the oxidation chemistry determines the auto-ignition timing, the heat release rate, the reaction intermediates, and the ultimate products of combustion. This paper reports an initial effort to apply our reduced chemical kinetic model to HCCI processes. The model was developed to study the pre-ignition characteristics (pre-ignition heat release and start of ignition) of primary reference fuels (PRF) and includes 29 reactions and 20 active species. The only modifications to the model were to make the proscribed adjustments to the fuel specific rate constants, and to enhance the H2O2 decomposition rate to agree with published data.
X