Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cast-In Cylinder Liners Designs to Improve Bonding and Shear Strength for Aluminum Block

2012-10-02
2012-36-0449
The tendency to use aluminum alloys to replace conventional gray cast irons (GCI) materials in engine blocks of passenger cars is gaining more and more importance driven by reduction of engine weight to achieve expectation for lowering fuel consumption and CO₂ emissions. Cast-in cylinder liners are commonly applied inside of aluminum engine blocks with designs of the outer surface usually selected through analysis of the aluminum casting process (e.g., high pressure die casting, precision sand cast), geometry complexity, thermal and mechanical loads. A good quality of clamping (bonding and shear strength) between the cast-in cylinder liner and aluminum block might guarantee a reliable heat transfer and thus low bore distortion. The good clamping can also contribute to improve the final machining of the liner after block casting. The most effective variants of cast-in cylinder liner designs were selected for the evaluation of clamping performance.
Technical Paper

High Value Gray Cast Iron Material for Heavy Duty Diesel Cylinder Liners

2011-10-04
2011-36-0298
The demand for higher output performance engines has lead to the increase of PCP (Peak Cylinder Pressure) and more aggressive engine designs for cylinder liners, mainly for new heavy duty engines developments where low cost components are been introduced. Such trends have generated demands to adequate the liner design by improving its material properties by changing its chemical composition, new materials data or even by introducing more accurate casting manufacturing process. Therefore, there is a clear tendency to development more and more alternative solutions that combine a certain technical high-value added and low cost. The most important material properties for cylinder liners are the ultimate tensile strength (UTS) and the fatigue tensile strength. Both parameters confer to the cylinder liners, especially for wet top flanged designs, the ability to survive under high mechanical and thermal load conditions even with reduced wall thickness.
X