Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Large-Scale CFD Approach for Spray Combustion Modelling in Compression-Ignited Engines

2005-09-11
2005-24-052
Computational simulations of the spray combustion and emissions formation processes in a heavy-duty DI diesel engine and in a small-bore DI diesel engine with a complicated injection schedule were performed by using the modified KIVA3V, rel. 2 code. Some initial parameter sets varying engine operating conditions, such as injection pressure, injector nozzle diameter, EGR load, were examined in order to evaluate their effects on the engine performance. Full-scale combustion chamber representations on 360-deg, Cartesian and polar, multiblock meshes with a different number of sprays have been used in the modelling unlike the conventional approach based on polar sector meshes covering the region around one fuel spray. The spray combustion phenomena were simulated using the detailed chemical mechanism for diesel fuel surrogate (69 species and 306 reactions).
Technical Paper

Numerical and Experimental Analysis of Diesel Air Fuel Mixing

1993-11-01
931948
The air fuel mixing process of a small direct injection (d.i.) diesel engine, equipped with two different re-entrant combustion chambers and two nozzles having unlike spray angles, has been studied by integrated use of in-cylinder laser Doppler velocimetry (LDV) measurements, engine tests, and KIVA simulations. The LDV measurements have been carried out in an engine with optical access motored at 2200 rpm. The engine tests have been performed on a similar engine at the same speed, at fixed start of combustion, and different air-fuel ratio. The KIVA-II simulations have been made using as initial conditions the parameters determined by LDV and engine tests. The re-entrant bowl with higher levels of air velocity and turbulent kinetic energy at the time of injection gives the best performance. The nozzle having a spray angle of 150° which injects the fuel into the regions at higher turbulent kinetic energy lowers the smoke emission levels.
X