Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Cadaver Knee, Chest and Head Impact Loads

1967-02-01
670913
Human tolerance to knee, chest, and head impacts based upon skeletal fracture of cadavers is reported. The results are based upon unrestrained cadaver impacts in a normal seated position in simulated frontal force accidents at velocities between 10 and 20 mph and stopping distances of 6-8 in. The head target was covered with 15/16 in. of padding. No skull or facial fractures were observed at loads up to 2640 lb. Extensive facial fractures and a linear skull fracture occurred during the application of the maximum head force of 4350 lb. The chest target was 6 in. in diameter with 15/16 in.of padding. The padding was rolled over the edge of the target to minimize localized high force areas on the ribs. A 1/8 in. diameter rod was inserted through the chest and fastened through a ball joint and flange to the soft tissue at the sternum.
Technical Paper

Impact Dynamics of Unrestrained, Lap Belted, and Lap and Diagonal Chest Belted Vehicle Occupants*

1966-02-01
660788
A comparison is presented of the forces, accelerations, and kinematics of an anthropomorphic dummy for identical sled impacts for unrestrained, lap belted, and lap and diagonal chest restrained conditions. Biaxial accelerometers were mounted in the head, chest, and on the proximal end of the femur to obtain the accelerations during the impacts. Seat belt load cells were put in series with the belts at each anchor point. Biaxial load cells were positioned to be impacted by the head, chest, and each knee for the unrestrained condition and by the head and chest for the lap belted configuration. For the lap and diagonal chest restrained condition these load cells were not used. Impacts of 10 and 20 miles per hour were made with sled stopping distance of 4 and 9 inches, respectively. At 20 miles per hour the head struck with a force of 1580 pounds in the unrestrained mode, 600 pounds with the lap belt, and did not hit with the lap and shoulder harness.
Technical Paper

Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies

1989-02-01
890756
This paper summarizes the rationale used to specify the geometric, inertial and impact response requirements for a small adult female dummy and a large adult male dummy with impact biofidelity and measurement capacity comparable to the Hybrid III dummy, the most advanced midsize adult male dummy. Body segment lengths and weights for these two dummies were based on the latest anthropometry studies for the extremes of the U.S.A. adult population. Other characteristic body segment dimensions were calculated from geometric and mass scaling relationships that assured that each body segment had the same mass density as the corresponding body segment of the Hybrid III dummy. The biomechanical impact response requirements for the head, neck, chest and knee of the Hybrid III dummy were scaled to give corresponding biomechanical impact response requirements for each dummy.
X