Refine Your Search

Topic

Search Results

Technical Paper

Adaptive Air Fuel Ratio Optimisation of a Lean Burn SI Engine

1996-05-01
961156
An adaptive air fuel ratio (AFR) control system has been implemented on a modern high performance fuel injected four cylinder engine. A pressure transducer in the combustion chamber is used to measure the indicated mean effective pressure (IMEP) for efficiency and cyclic variability feedback. The controller tunes the relative AFR, λ, in the range λ = 1 to λ = 1.5, to maximise the thermal efficiency in real time. The system adaptively accounts for changes in operating conditions such as ambient temperatures and user demands. The IMEP feedback allows the closed loop control system to update every few revolutions with short tune in times in the order of seconds. Open and closed loop test results are presented, demonstrating the incremental efficiency gains over fixed or mapped AFR control. The system continually adjusts the fuelling for maximum efficiency given its constraints and provides a basis for optimisation of future lean burn technologies.
Journal Article

An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine

2015-04-14
2015-01-1659
This paper presents a combined experimental and numerical method for analysing energy flows within a spark ignition engine. Engine dynamometer data is combined with physical models of in-cylinder convection and the engine's thermal impedances, allowing closure of the First Law of Thermodynamics over the entire engine system. In contrast to almost all previous works, the coolant and metal temperatures are not assumed constant, but rather are outputs from this approach. This method is therefore expected to be most useful for lean burn engines, whose temperatures should depart most from normal experience. As an example of this method, the effects of normalised air-fuel ratio (λ), compression ratio and combustion chamber geometry are examined using a hydrogen-fueled engine operating from λ = 1.5 to λ = 6. This shows large variations in the in-cylinder wall temperatures and heat transfer with respect to λ.
Technical Paper

Combustion System Development and Analysis of a Carbureted and PFI Normally Aspirated Small Engine

2010-09-28
2010-32-0095
This paper focuses on the combustion system development and combustion analysis results for a normally aspirated 0.43-liter small engine. The inline two-cylinder engine used in experiments has been tested in a variety of normally aspirated modes, using 98-RON pump gasoline. Test modes were defined by alterations to the induction system, which included carburetion and port fuel injection fuel delivery systems. The results from this paper provide some insight into the combustion effects for small cylinder normally aspirated spark ignition engines. This information provides future direction for the development of smaller engines as oil prices fluctuate and CO₂ emissions begin to be regulated. Small engine combustion is explored with a number of parametric studies, including a range of manifold absolute pressures up to wide open throttle, engine speeds exceeding 10,000 rev/min and compression ratios ranging from 9 to 13.
Journal Article

Combustion System Development and Analysis of a Downsized Highly Turbocharged PFI Small Engine

2010-09-28
2010-32-0093
This paper provides some insight into the future direction for developing smaller capacity downsized engines, which will be needed to meet tight CO₂ targets and the world's future powertrain requirements. This paper focuses on the combustion system development and combustion analysis results for a downsized 0.43-liter highly turbocharged engine. The inline two-cylinder engine used in experiments was specifically designed and constructed to enable 25 bar BMEP. Producing this specific output is one way forward for future passenger vehicle powertrains, enabling in excess of 50% swept capacity reduction whilst maintaining comparable vehicle performance. Previous experiments and analysis have found that the extent to which larger engines can be downsized while still maintaining equal performance is combustion limited.
Technical Paper

Comparison of Pfi and Di Superbike Engines

2008-12-02
2008-01-2943
Gasoline Direct Injection (DI) is a technique that was successful in motor sports several decades ago and is now relatively popular in passenger car applications only. DI gasoline fuel injectors have been recently improved considerably, with much higher fuel flow rates and much finer atomization enabled by the advances in fuel pressure and needle actuation. These improved injector performance and the general interest in reducing fuel consumption also in motor sports have made this option interesting again. This paper compares Port Fuel Injection (PFI) and DI of gasoline fuel in a high performance, four cylinder spark ignition engine for super bike racing. Computations are performed with a code for gas exchange, heat transfer and combustion, simulating turbulent combustion and knock.
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

Design and Development of a Gasketless Cylinder Head / Block Interface for an Open Deck, Multi Cylinder, Highly Turbocharged Small Engine

2006-11-13
2006-32-0036
This paper describes the design and development of a gasketless interface, which was used successfully to couple an aluminium cylinder head to an open deck design cylinder block. The cylinder block was manufactured from aluminium, featuring shrink fit dry cast iron liners. Extensive CAE modelling was employed to implement the gasketless interface and thus avoid using a conventional metal or fiber based cylinder head gasket. The engine was specifically designed and configured for the purpose, being a 430 cm3, highly turbocharged (TC) twin cylinder in-line arrangement with double overhead camshafts and four valves per cylinder. Most of the engine components were specially cast or machined from billets. The new design removed the conventional head gasket and relied on the correct amount of face pressure generated by interference between the cylinder head and block to seal the interface. This had advantages in improving the structural integrity of the weak open deck design.
Technical Paper

Exploring the Charge Composition of SI Engine Lean Limits

2009-04-20
2009-01-0929
In this paper the experimental performance of the lean limits is examined for two different types of engines the first a dedicated LPG high compression ratio 2-valve per cylinder engine (Ford of Australia MY 2001 AU Falcon) and the second a gasoline moderate compression 4-valve per cylinder variant of the same engine (Ford of Australia MY 2006 BF Falcon). The in-cylinder composition at the lean limit over a range of steady state operating conditions is estimated using a quasi-dimensional model. This makes it possible to take into account the effects of both residual fraction and fresh charge diluents (EGR and excess air) that allow the exploration of a modeled lean limit performance [1, 2]. The results are compared to the predictions from a model for combustion variability applied to the quasi-dimensional model operating in optimization mode.
Technical Paper

Exploring the Geometric Effects of Turbulence on Cyclic Variability

2010-04-12
2010-01-0540
Cyclic variability in spark ignition engine combustion, especially at high dilution through lean burn or high EGR rates, places limits on in-cylinder NOx reduction and thermal efficiency. Flame wrinkling, resulting from interactions with turbulence, is a potential source of cyclic variations in turbulence. Previous studies have shown that flame kernels are subject to significant distortions when they are smaller than the integral length scale of turbulence. With the assumption that flame development is not subject to noticeable variations, after it reaches the integral length scale, the authors have shown that turbulent-burning-caused combustion variability can be successfully modeled as a function of laminar flame speed and turbulence intensity. This paper explores the contributions of flame wrinkling to flame kernel growth variation. As the kernel growth problem is complex, this study only explores one of the many aspects of the problem.
Technical Paper

HAJI Operation in a Hydrogen-Only Mode for Emission Control at Cold Start

1995-02-01
950412
The HAJI (Hydrogen Assisted Jet Ignition) system for S.I. engines utilises direct injection of small amounts of hydrogen to enhance the combustion of a variety of automotive fuels. Although not the primary purpose of HAJI, the hardware, once in place, also lends itself to the possibility of hydrogen-only running during a cold start. Cold-start simulations have been performed using a single cylinder engine. Results are presented, comparing hydrogen-only tests with standard HAJI operation and normal spark-ignition operation. HAJI and spark ignition tests were carried out with gasoline as the main-chamber fuel. Emission levels and combustion stability characteristics were recorded as the engine warmed up. The differences between the various fueling/ignition scenarios are presented and the implications for possible automotive applications are discussed in light of current and proposed emissions legislation.
Technical Paper

Joint Efficiency and NOx Optimization Using a PSO Algorithm

2006-04-03
2006-01-1109
The challenge of tough fuel consumption reduction targets and near zero NOx emission standards can be met by optimization of the full range of engine design variables. Here these are explored through an engine simulation model and the application of an optimizing algorithm that can work in discontinuous data space. The combustion model has main features that include flame propagation, the effects of turbulence, chamber shape interaction and NOx formation. Two engine configurations are used to illustrate the application of the model and optimizer. Both allow the adoption of extra lean burn possible with LPG as fuel and EGR through an external route or cam phasing. In the first the compression ratio and cam profiles are fixed, in the second study they are also optimized.
Technical Paper

Lean Burn Performance of a Natural Gas Fuelled, Port Injected, Spark Ignition Engine

2012-04-16
2012-01-0822
This paper presents a study of the performance of a lean burn, natural gas-fuelled, naturally aspirated, spark ignition engine for an E class vehicle. Engine performance and exhaust emissions (NO, CO, and UHC) data are first discussed. An energy balance of the engine operating at different loads and air-fuel ratios is then presented, and used to explain why engine efficiency varies with air-fuel ratio. Finally, the hot start drive cycle CO2e (CO2 equivalent) emissions are estimated for a vehicle with this engine. This shows a potential for significant reduction in vehicle greenhouse gas emissions compared to an equivalent gasoline-fuelled vehicle.
Journal Article

Mixture Preparation Effects on Gaseous Fuel Combustion in SI Engines

2009-04-20
2009-01-0323
This paper presents a comparison of the influence of different mixture preparation strategies on gaseous fuel combustion in SI engines. Three mixture preparation strategies are presented for a dedicated LPG fuelled engine, showing varying results - gaseous phase port injection (PFI-G), liquid-phase port injection (PFI-L) and gaseous-phase throttle-body injection (TBI-G). Previous work by the authors has shown considerable differences in emissions and thermal efficiency between different fuelling strategies. This paper extends this work to the area of combustion characteristics and lean limit operation and closer analyses the differences between these systems. A dedicated LPG in-line six cylinder engine with compression ratio increased to 11.7:1 (up from the standard 9.65:1) was tested over a range of speed/torque conditions representing most of the steady-state parts of the Euro drive-cycle for light duty-vehicles. The air-fuel ratio was varied from lambda 1.0 to the lean limit.
Technical Paper

Modeling Alternative Prechamber Fuels in Jet Assisted Ignition of Gasoline and LPG

2009-04-20
2009-01-0721
Gas assisted jet ignition is a prechamber combustion initiation system for conventional spark ignition engines. With the system, a chemically active turbulent jet is used to initiate combustion in lean fuel mixtures enabling reliable combustion over a much broader range of air-fuel ratios. The extended range is due to the distributed ignition source provided by the jet, which can overcome the problems of poorly mixed main chamber charges and slower burning fuels. In addition, the ability to reliably ignite lean mixtures improves the thermal efficiency and enables ultra low emission levels. Experiments together with flame propagation modeling completed using STAR-CD with CHEMKIN Kinetics were done in order to examine the effects of numerous prechamber fuels on the ignition of the main fuel, which consisted of either liquefied petroleum gas (LPG) or gasoline.
Technical Paper

Numerical Study of a Turbocharged, Jet Ignited, Cryogenic, Port Injected, Hydrogen Engine

2009-04-20
2009-01-1425
Favorable and unfavorable properties of hydrogen as a combustion engine fuel have been accommodated in a design of a fuel efficient and clean engine providing similar to gasoline maximum torque and power. The advanced H2ICE being developed is a turbocharged engine fitted with cryogenic port hydrogen fuel injection and the hydrogen assisted jet ignition (HAJI). The combustion chamber is designed to produce a high compression ratio and therefore high thermal efficiency. A waste gated turbocharger provides pressure boosting for an increased power density running ultra lean for SULEV operation without after treatment. Thanks to the combustion properties of hydrogen further enhanced by the HAJI system, the engine load is mainly controlled throttle-less decreasing the fuel-to-air equivalence ratio from ultra lean ϕ=0.43 to ultra-ultra lean ϕ=0.18. The computational model developed for addressing the major design issues and the predicted engine performance and efficiency maps are included.
Technical Paper

Optimization of All SI Engine Combustion Control and Related Events for Efficiency

2006-04-03
2006-01-0045
There are two parts to achieving the optimization reported here. The development of an engine simulation model and an optimization algorithm. The engine performance is evaluated using a quasi-dimensional engine combustion model with sub models to incorporate friction, heat losses and abnormal combustion, that is knocking. After extensive search and development a new Particle Swarm Optimizer (PSO), has been developed. Optimization includes, for the first time, the search of discontinuous design variables. The input variables considered for this investigation are manifold air pressure, air-fuel ratio, spark timing, compression ratio, valve timing events including valve open duration, maximum valve lift and engine speed. This enables the identification of the maximum thermal efficiency at a given power output at any engine operating speed.
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
Technical Paper

Optimum Control of an S.I. Engine with a λ=5 Capability

1995-02-01
950689
HAJI (Hydrogen Assisted Jet Ignition) is an advanced combustion initiation system for otherwise standard S.I engines. It utilises the fluid mechanics of a turbulent, chemically active jet, combined with the reliability of spark igniting rich hydrogen mixtures. The result is an extremely robust ignition system, capable of developing power from an engine charged with air-fuel mixtures as lean as λ = 5. Experiments have been performed using a single cylinder engine operating on gasoline in the speed range of 600-1800 r/min. Data are presented in the form of maps which describe fuel efficiency, combustion stability and emissions with respect to load, speed, air-fuel ratio and throttle. The results are incorporated into a model of a known engine and vehicle and this is used to estimate performance over the Federal drive-cycle.
Technical Paper

Performance of a Port Fuel Injected, Spark Ignition Engine Optimised for Hydrogen Fuel

2012-04-16
2012-01-0654
This paper presents a study of the performance of a 6-cylinder, spark-ignited, port-fuel-injected, production engine modified for hydrogen fueling. The engine modifications include turbo-charging, multiple fuel injectors per port and charge-dilution control techniques. Pumping losses are reduced through ultra-lean burn and throttle-less operation alongside high charge dilution ratio control achieved by twin independent variable cam timing without external EGR. Lean-burn combustion, engine-out emissions and brake thermal efficiency results are examined in detail. In particular, low NO emissions and brake thermal efficiencies near 38% are observed experimentally at the same operating conditions. The former is explained in terms of the usual thermal NOx pathway. Usage of throttle position, injection timings and cam timings for avoiding preignition and knock over the entire engine map are also discussed.
Technical Paper

Spatial and Temporal Temperature Distributions in a Spark Ignition Engine Piston at WOT

2007-04-16
2007-01-1436
Two coupled finite element analysis (FEA) programs were written to determine the transient and steady state temperature distribution in a spark ignition engine piston. The programs estimated the temperatures at each crank angle degree (CAD) through warm-up to thermal steady state. A commercial FEA code was used to combine the steady state temperature distribution with the mechanical loads to find the stress response at each CAD for one complete cycle. The first FEA program was a very fast and robust non-linear thermal code to estimate spatial and time resolved heat flux from the combustion chamber to the aluminum alloy piston crown. This model applied the energy conservation equation to the near wall gas and includes the effects of turbulence, a propagating heat source, and a quench layer allowing estimates of local, instantaneous near-wall temperature gradients and the resulting heat fluxes.
X